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Abstract

Coarse woody debris (CWD) is a significant component of the forest biomass pool; hence a

model is warranted to predict CWD decomposition and its role in forest carbon (C) and nutri-

ent cycling under varying management and climatic conditions. A process-based model,

CWDDAT (Coarse Woody Debris Decomposition Assessment Tool) was calibrated and val-

idated using data from the FACE (Free Air Carbon Dioxide Enrichment) Wood Decomposi-

tion Experiment utilizing pine (Pinus taeda), aspen (Populous tremuloides) and birch (Betula

papyrifera) on nine Experimental Forests (EF) covering a range of climate, hydrology, and

soil conditions across the continental USA. The model predictions were evaluated against

measured FACE log mass loss over 6 years. Four widely applied metrics of model perfor-

mance demonstrated that the CWDDAT model can accurately predict CWD decomposition.

The R2 (squared Pearson’s correlation coefficient) between the simulation and measure-

ment was 0.80 for the model calibration and 0.82 for the model validation (P<0.01). The pre-

dicted mean mass loss from all logs was 5.4% lower than the measured mass loss and

1.4% lower than the calculated loss. The model was also used to assess the decomposition

of mixed pine-hardwood CWD produced by Hurricane Hugo in 1989 on the Santee Experi-

mental Forest in South Carolina, USA. The simulation reflected rapid CWD decomposition

of the forest in this subtropical setting. The predicted dissolved organic carbon (DOC)

derived from the CWD decomposition and incorporated into the mineral soil averaged 1.01

g C m-2 y-1 over the 30 years. The main agents for CWD mass loss were fungi (72.0%) and

termites (24.5%), the remainder was attributed to a mix of other wood decomposers. These

findings demonstrate the applicability of CWDDAT for large-scale assessments of CWD

dynamics, and fine-scale considerations regarding the fate of CWD carbon.
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Introduction

Coarse wood debris (CWD) is a significant forest carbon (C) pool [1, 2], with the global input

rate of CWD ranging from about 0.12 to 30.0 Mg ha-1 yr-1 [2]. Decomposition of CWD plays

an important role in nutrient and C cycling in forests [3–8]. Correspondingly, the stock of

CWD within a forest is dependent on the turnover rate [9–11], which is dependent on many

factors, including decomposer community, temperature, moisture, and wood properties [2,

12–17].

A variety of empirical models, including single-exponential [18–20], multiple-exponential

[21], linear [3], and lag-time [2] have been developed in attempts to characterize CWD decom-

position using interactions among wood properties and abiotic factors. However, broad infer-

ences from predictions based on empirical models are constrained by the measurements taken

at study sites or regions that were used to develop the predictive equations. In contrast, mecha-

nistic models can integrate fundamental processes using forcing functions based on long-term

measurements and experiments, hence providing more robust applicability.

Russell et al. [22] utilized CWD surveys conducted in conjunction with forest inventory

plots to effectively estimate CWD decomposition by assessing transitions among decay classes

in the eastern United States. Further, several models have been developed to assess CWD

decomposition without relying entirely on empirical relationships. Yin [23] developed a

numerical model, based on the methodology used to analyze the long-term dynamics of C and

nitrogen (N) in forest soils, as suggested by Agren and Bosatta [24]. That model incorporated

substrate quality and microbial activity that was sensitive to abiotic conditions. Zell et al. [25]

incorporated meta-analysis and a mixed effects model to predict CWD decomposition for 42

species that was sensitive to abiotic conditions. Although these models are not fully mechanis-

tic, they are better than simple empirical models. The process-based soil C model, Yasso,

added functionality to assess woody litter decomposition in soils and was tested using litterbag

data in Canada [26, 27], and subsequently was used as the foundation for assessing CWD

decomposition in boreal forests [28].

When considering the role of CWD decomposition with respect to the various forest C

pools, environmental fluxes across habitats, and a changing climate, it is necessary to use a

mechanistic model that reflects inherent biogeochemical processes. The CWDDAT (Coarse

Woody Debris Decomposition Assessment Tool) has been developed to simulate CWD

decomposition in forests by incorporating organic matter decomposition processes and eco-

logical drivers regulating CWD mass loss as well as the fate of the wood C for climatic condi-

tions that range from the tropics to the boreal zone [29].

The main functionalities of this model have been tested using different ambient conditions

from 89 sites (14˚ N to 65˚ N latitude and 58 to 139˚ W longitude) distributed from the tropics

to boreal zones, with a large range in mean annual temperature (-11.8˚ to 26.5˚ C), annual pre-

cipitation (181 to 6,143 mm), annual snowfall (0 to 612 kg m-2), and elevation (3 m to 2,824 m

above mean sea level). The model has also been tested with respect to wood properties, includ-

ing species group (hardwood and softwood), wood density (0.1 to 1.0 g cm-3) and size (4.0 to

45 cm in diameter). The results from the model assessment showed that CWD decomposition

was highly sensitive to climatic factors, elevation, CWD properties and position (standing vs

downed) [29]. Accordingly, the assessment affirms that CWDDAT should be a potentially

effective tool for estimating CWD dynamics in forests.

Here we report on: (1) model calibration using observations from four sites to affirm

whether or not the model performs within the design objectives [29]; (2) model validation

using observations from five sites to assess whether or not the model performs as well with dif-

ferent observational inputs as it did under testing and calibration conditions, and (3) model
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application by assessing decomposition of CWD left by Hurricane Hugo on the Santee Experi-

mental Forest (Santee EF) in South Carolina in 1989. To achieve the first two objectives the

observations from nine sites on the FACE (Free Air Carbon Dioxide Enrichment) Wood

Decomposition Experiment (FWDE) are used to provide decomposition response data (6

years) for three tree species. The assessment of CWD following Hurricane Hugo is predicated

on pre- and post-storm forest assessments which encompass eight decades [30–33].

Materials and methods

Study sites

The FWDE utilized nine Experimental Forests (EF) representing different bio-climatic zones

to study CWD decomposition across the continental USA (Fig 1, Table 1) [34]. The study sites

range in mean annual precipitation from 576 mm at the Fraser EF in Colorado to 2,259 mm at

the Coweeta EF in North Carolina based on local climatic observations from 2000 to 2017 (S1

Table). The lowest annual mean temperature of 2.2˚C is at the Tenderfoot EF in Montana and

the highest temperature of 18.6˚C is at the Santee EF site in South Carolina (Table 1). The ele-

vation ranges from 8 m above mean sea level at Santee EF to 2,710 m at Fraser EF. There are

substantial differences in vegetation coverage among sites, ranging from sparse shrub cover at

the San Dimas EF in California to intact forests at Coweeta in North Caronia and Caspar

Creek EF in California, leaf area index (LAI) ranges from 0.1 to 5.5 m2 m-2 (Table 1), with an

average of 2.6 m2 m-2.

The Santee EF is located in South Carolina of USA (33.15˚ N, 79.8˚ W); it includes a paired

watershed system [33], comprising a reference watershed (WS80) and a treatment watershed

(WS77). Hurricane Hugo, a Category IV hurricane (1989), severely impacted the Santee EF.

Over 80% of trees within WS80 were broken or uprooted, about 130 Mg ha-1 of CWD were

left in the watershed, based on the post hurricane inventory [30, 35]. All CWD produced by

the hurricane on WS80 were left in situ without salvage logging. The Santee EF has biotic and

abiotic observations over the last 80 years, including climate, biomass, and hydrology, which

are useful for evaluating CWDDAT model applications; the forest is also an area with the high-

est prevalence of subterranean termites [36].

Fig 1. Nine FACE wood decomposition experiment study sites in the continental USA used for model calibration

and validation; red spots are the sites for model calibration, and yellow for the validation; this figure was

produced with the data from Natural Earth. Free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.pone.0254408.g001
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This work utilizes observations provided by the FWDE [34], which is located on the USDA

Forest Service, Experimental Forest and Range Network [37]. Details regarding the FWDE

and individual sites are provided by Trettin et al. [34]. Several of the FWDE primary investors

(PIs) are U.S. Forest Service employees (Drs. Trettin, Page-Dumroese and Lindner), and they

thus are able to request use of the Experimental Forest lands. We do recognize the Experimen-

tal Forest managers we have worked with in the acknowledgements. Data supporting the anal-

yses of the post Hurricane Hugo response of CWD on the Santee EF were obtained from the

cited literature [30–33, 35].

Observation setup

Three species were used for the FWDE: loblolly pine (Pinus taeda L.) from the Duke Forest

FACE site in North Carolina, USA, and aspen (Populus tremuloides Michx.) and birch (Betula
papyrifera Marshall) from the Rhinelander FACE site in Wisconsin, USA. Twenty-four aspen

and birch logs (1 m in length) and 24 pine logs (2 m in length) were placed horizontally on the

surface of the forest floor to represent downed CWD (Fig 2A). Also, 24 loblolly pine logs (2 m

in length) were placed vertically to emulate standing dead snags by placing the logs upright on

Table 1. Locations of FACE wood study sites used for model calibration and validation�.

Site State Latitude (˚N) Longitude (˚W) Altitude (m) MAT (˚C) MAP (mm) Soil Series Forest Type Use LAI

Caspar Creek CA 39.3726 123.7063 240 10.8 1175.4 Vanda-mme Douglas fir VL 3.5

Coweeta NC 35.0467 83.4574 910 12.2 2,259.2 Evard-Cowee Oak-hickory CL 5.5

Duke NC 33.9760 79.0924 170 15.8 1,434.8 Appling Loblolly-shortleaf

pine

VL 2.5

Fraser CO 39.9296 105.8698 2710 2.9 576.4 Herd-Frisco Fir-spruce VL 2.5

Marcell MN 47.5057 93.4861 430 3.7 670.6 Cutaway White-red-jack pine CL 2.2

San Dimas CA 34.2064 117.7615 670 17.7 523.1 Trigo Sparse Shrub CL 0.1

Santee SC 33.1482 79.7910 8 18.6 1,673.9 Wahee Loblolly-shortleaf

pine

CL 2.5

Sierra Ancha AZ 33.8039 110.9159 2220 11.2 717.8 Sobega Ponderosa pine VL 2.2

Tender-foot

Creek

MT 46.9236 110.8697 2130 2.2 857.8 Jeff-lake-Yellow-mule-

Lonniebee

Lodgepole pine VL 2.2

�: Use: CL, calibration; VL, validation; MAT, mean annual temperature; MAP, mean annual precipitation, based on the local climatic data observed between 2011 and

2017 (S1 Table); LAI, leaf area index, m2 m-2.

https://doi.org/10.1371/journal.pone.0254408.t001

Fig 2. Horizontal (downed) FACE logs. (a) and vertical (standing) FACE woods (b).

https://doi.org/10.1371/journal.pone.0254408.g002
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a PVC pipe in a manner to preclude ground contact (Fig 2B). The fresh logs following harvest-

ing were deployed in 2011 [34], for this study we utilize response data following 6 years

decomposition. Those FACE logs used for this experiment had intact bark.

Sample collection and analysis

A 3 to 4 cm thick disk was cut from the end of each log before they were installed in EFs to

measure their initial wood density at time zero (T0). The weight and length of each log and

diameter at each end and in the middle of each log were measured, and the dry weight, vol-

ume, and surface area for each log were calculated. Initial wood density was measured by

water immersion followed by drying (105˚C) and weighing [34]. In the sixth year (T6) follow-

ing installation, each log was weighed in the field, unless it was too rotten to be handled; two

disks (3–4 cm) were also cut from each end of the log, weighed in situ, and immediately placed

in a plastic bag and sealed for transport to the laboratory. The T6 disk samples were used for

density determination by immersion in water to determine volume, followed by drying at

105˚C. The moisture content of the disk samples was used to adjust the log field weight to a

dry weight basis. The T6 wood density and calculated log volume were also used to calculate a

log weight. The moisture content and wood density averaged from the two disks collected

from a FACE log in situ were used to calculate the wood mass loss for the log. The measured

log mass loss (MLML) was the difference in log dry weight between the time T0 and T6. The

calculated log mass loss (CLML) was based on the difference in log mass based on the log vol-

ume and wood density of the disks between the time T0 and T6.

Model calibration and validation

Calibration and validation are important steps in applying a numerical model [38], since (1)

model calibration is used to determine whether or not the model is in line with the design and

application objectives, and (2) model validation is used to determine whether or not the model

is performing as expected based on measurements. Accordingly, a well-performing model will

produce similar results in the calibration and validation steps, thereby affirming applicability

of the model for the target study. However, the datasets for the model validation should be

completely different from those used for calibration. Accordingly, the CWDDAT was cali-

brated using observations from four sites with a range in climate, elevation and latitude; and

the model was validated using observations from the other five sites (Table 1) with varying eco-

logical conditions among the sites. The simulation results were compared to the year 6th

FWDE observations of mass loss from the FACE logs.

Model parameterization

The CWDDAT was parameterized using climate, soil, and vegetation data from the EF sites

(Table 1). Climate data were obtained from weather stations near the EFs (S1 Table) and the

Daymet database [39] for fill-in missing climatic observations. The T0 data for each EF site was

were summarized for the model parameterization (Table 2). The logs were divided into differ-

ent size classes based on the measurements at the time T0; The FACE logs were divided into

two species groups: hardwoods–aspen and birch (coded as species 1, Table 2) and softwood–

loblolly pine (coded as species 2, Table 2).

Assumptions for the simulation were: (1) annual litter fall for each site was initialized based

on current forest species and biomass, this is used because litter can cover downed logs thereby

affecting moisture content and temperature, (2) LAI (leaf area index) was initialized for each

site based on the current forest type because leaf area can affect soil water content and temper-

ature by changes in throughfall and light radiation to the forest floor, and (3) aboveground
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Table 2. Parameters of FACE logs used to calibrate and validate the model�.

Location Position Species Size Diameter (cm) Log Mass (kg) Wood Density (g cm-3)

Caspar Creek Down 1 1 5.96 55.35 0.47

1 2 8.76 35.74 0.47

2 2 10.72 71.13 0.53

2 3 17.89 210.54 0.52

2 4 25.40 274.89 0.51

Stand 2 2 12.10 145.37 0.53

2 3 18.70 72.27 0.49

2 4 24.20 318.57 0.54

Coweeta Down 1 1 6.16 50.04 0.46

1 2 8.84 54.29 0.46

2 2 12.98 118.03 0.53

2 3 16.88 233.22 0.54

2 4 24.57 142.78 0.56

Stand 2 2 12.47 131.50 0.53

2 3 18.10 188.99 0.52

2 4 24.41 176.84 0.52

Duke Down 1 1 6.09 55.80 0.46

1 2 8.88 39.03 0.45

2 1 6.33 2.91 0.47

2 2 11.55 152.72 0.47

2 3 17.86 519.20 0.53

2 4 25.85 61.89 0.65

Stand 2 2 12.79 95.07 0.55

2 3 18.34 337.59 0.52

2 4 27.73 115.41 0.52

Fraser Down 1 1 5.97 56.84 0.46

1 2 8.71 25.12 0.45

2 2 12.05 123.11 0.54

2 3 17.71 190.58 0.54

2 4 26.35 224.18 0.57

Stand 2 2 11.95 98.86 0.52

2 3 18.52 254.88 0.53

2 4 25.13 190.15 0.53

Marcell Down 1 1 6.04 51.11 0.48

1 2 8.23 42.14 0.46

2 2 12.75 124.52 0.53

2 3 18.68 276.51 0.52

2 4 25.63 89.62 0.49

Stand 2 2 12.72 168.25 0.53

2 3 17.64 162.53 0.54

2 4 24.88 104.46 0.61

(Continued)
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biomass, litter fall, and LAI varied with time; the increments were estimated by species group,

and stand age.

The model was also parameterized for assessing CWD decomposition on WS80 at the San-

tee EF, where Hurricane Hugo left approximately 130 Mg ha-1 in CWD (Table 3) based on the

damage inventory conducted by Hook et al. [30]. Data for vegetation, climate, and soil used to

parameterize the model for this application are similar to those used for assessing the impact

of the hurricane on C sequestration in this watershed [33].

Model performance evaluation

Model calibration and validation were evaluated using four widely employed quantitative

methods [40]: the determination coefficient (R2, squared Pearson’s correlation coefficient),

Table 2. (Continued)

Location Position Species Size Diameter (cm) Log Mass (kg) Wood Density (g cm-3)

San Dimas Down 1 1 6.05 57.59 0.47

1 2 8.42 27.78 0.45

2 2 11.89 91.09 0.53

2 3 18.61 252.68 0.53

2 4 25.71 196.79 0.52

Stand 2 2 11.80 59.63 0.54

2 3 18.14 351.20 0.55

2 4 24.77 96.27 0.56

Santee Down 1 1 6.23 53.12 0.46

1 2 8.62 41.30 0.46

2 2 8.85 4.95 0.52

2 3 18.55 1101.15 0.53

2 4 24.42 319.22 0.54

Stand 2 2 13.05 79.96 0.50

2 3 19.16 297.43 0.53

2 4 24.93 290.02 0.55

Sierra Ancha Down 1 1 5.59 38.34 0.49

1 2 8.90 64.66 0.46

2 2 13.27 50.41 0.54

2 3 19.31 472.78 0.54

2 4 23.42 131.45 0.56

Stand 2 2 13.08 108.58 0.54

2 3 20.16 282.15 0.55

2 4 25.26 310.22 0.56

Tenderfoot Creek Down 1 1 6.22 47.35 0.46

1 2 8.76 54.62 0.47

2 2 12.31 102.97 0.56

2 3 18.98 297.57 0.54

2 4 24.80 190.69 0.55

Stand 2 2 11.48 119.20 0.53

2 3 17.81 211.35 0.53

2 4 24.75 94.97 0.54

�: species: 1, hardwood; 2, softwood

size: 1, 4.5–7.5 cm; 2, 7.5–15.0 cm; 3, 15.0–22.5 cm; 4, 22.5–30.0 cm; 5, 30.0–37.5 cm; 6, 37.5–45.0 cm in diameter.

https://doi.org/10.1371/journal.pone.0254408.t002
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model performance efficiency (E) [41], percent bias (PBIAS), and the RRS [the ratio of the

root mean squared error (RMSE) to SD (standard deviation)] [42].

E (−1, 1) is the key variable used for evaluating the model performance and is calculated as

E ¼ 1 �

P
ðOi � PiÞ

2

P
ðOi �

�OÞ2
ð1Þ

where Oi and Pi are the observed values and the predicted values obtained from the modelling,

respectively; �O is the observed mean. The evaluation criteria are: if E<0.0, the model is not

applicable; 0.0�E<0.25, the model performs poorly; 0.25�E<0.5, the model performance is

fair; 0.5�E<0.75, model performance is good; and if E�0.75, the model performs excellently.

The evaluation variables, PBIAS (criteria: between -25.0% and 25.0%) and RRS (criteria:

0.0–0.7), are calculated, respectively, as

PBIAS ¼
P
ðOi � PiÞP

Oi
� 100 ð2Þ

and

RRS ¼
RMSE
SD

ð3Þ

where SD is the observed standard deviation; RMSE is the root mean squared error between

observed and simulated values, calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðOi � PiÞ

2

n

s

ð4Þ

where n is the number of samples or the pairs of the observed and simulated values.

The time to achieve 50% mass loss of CWD from the original mass (half-life, T50) is a useful

metric for comparing decomposition responses; it was calculated as

T50 ¼ � Lnð0:5Þ � k ð5Þ

where k is the decomposition constant, y-1, based on the single exponential model that is

widely used to assess CWD decomposition as follows,

Mt ¼ M0 � e� kt ð6Þ

Table 3. CWD mass of each size class on WS80�.

Size Class Downed Standing

Soft Hard Soft Hard

1 0 0 0 0

2 3.90 7.30 0 0.50

3 11.21 11.98 0.50 1.01

4 20.90 17.190 2.49 1.02

5 23.80 12.00 3.49 1.01

6 10.20 0 1.50 0

�: Unit, Mg ha-1; the total CWD mass on WS80 was 130 Mg ha-1

size: 1, 4.5–7.5 cm; 2, 7.5–15.0 cm; 3, 15.0–22.5 cm; 4, 22.5–30.0 cm

5, 30.0–37.5 cm; 6, 37.5–45.0 cm in diameter.

https://doi.org/10.1371/journal.pone.0254408.t003
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where Mt is the mass remaining at time t (years); M0 is the initial mass; k is the CWD decom-

position constant.

Because the CWD decomposition may not follow a perfect exponential model [3, 13, 21,

43], a function combining power and exponential components (Eq 7) was used to assess the

CWD decomposition, i.e.,

Mt ¼ M0 � ðt þ 1Þ
k2 � e� k1t ð7Þ

where k1 and k2 are the CWD decomposition constants. Since Eq 7 has two decomposition

constants, Eq 5 cannot be directly used to compute the half-life of CWD; accordingly, T50 for

this function was calculated using an iterative method [44].

Results

Model calibration

Four metrics for evaluating model performance for the calibration step were used to determine

if the model is in the line of the design objectives. The PBIAS resulted from model calibration

was 10.3 for MLML, and 7.39 for the CLML (Table 4). RRS was 0.51 and 0.35 for calibration

against the MLML and CLML respectively. These metrics were within acceptable ranges

[PBIAS 2 (-25.0, 25.0) and RRS 2 (0.0, 0.7)]. The determination coefficient R2 (Fig 3) showed

that the simulated mass loss was highly correlated with both the MLML (R2 = 0.80) and CLML

(R2 = 0.90). The simulated total mass loss fraction (0.331) over six years (T0 to T6) for model

calibration was about 10.3% lower than the MLML (0.369), and the simulated total mass loss

fraction (0.416) over six years was 7.4% lower than the CLML (0.449). The difference in mass

loss fraction between the MLML and CLML reflect uncertainties in estimating log mass loss.

Model performance efficiency [E = 0.71, E 2 (-1, 1.0)] for the calibration against the mea-

sured mass loss showed that the model performance was within the rating range of “Good”

(0.50�E<0.75). The efficiency (E = 0.87) of model calibration for the calculated mass loss

using the disks collected in situ showed that the model performance was excellent (E�0.75),

and reflects a difference in model performance efficiency for model calibration against data

obtained from different methods (see Discussion below). These performance metrics from

model calibration step indicate that the model is applicable for assessing CWD decomposition

across the range conditions on the EFs, and it is in line with design objectives [29].

Model validation

Similar to the model performance evaluation for the model calibration, the four model evalua-

tion metrics provide a basis for assessing the validation step, which affirms the applicability of

Table 4. Results from the model performance evaluation�.

Item Calibration Validation

Measured Calculated Measured Calculated

E 0.707 0.868 0.818 0.734

R2 0.801 0.900 0.822 0.758

PBIAS 10.30 7.391 1.013 -4.627

RRS 0.510 0.348 0.404 0.498

Mean 0.369 0.449 0.364 0.359

Predicted mean 0.331 0.416 0.360 0.375

�: Measured, mass loss measured in situ; Calculated, mass loss calculated based on the disks collected from experimental logs in situ; Mean, mass loss fraction measured

or calculated; predicted mean, mass loss fraction from simulation.

https://doi.org/10.1371/journal.pone.0254408.t004
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the model to the study. Model validation against measured and calculated mass loss of logs

from the FWDE were 1.01 and -4.63 for PBIAS, 0.40 and 0.50 for RRS, and 0.82 and 0.76 for

R2 (Fig 4; Table 4), respectively. These metrics were within acceptable ranges for the metrics

[PBIAS 2 (-25.0, 25.0), RRS 2 (0.0, 0.7) and R2 2 (0.0, 1.0)]. The simulated fraction of total

mass loss (0.360) over the six-year simulation period was 1.0% lower than the MLML (0.364),

but the simulated mass loss fraction (0.375) was approximately 4.6% higher than the CLML

(0.359). The model performance efficiency (E) was 0.82 and 0.74 for the validation against the

measured and calculated mass loss values, respectively; indicating that model performance was

within the rating range of “Excellent” (E�0.75) when validated against measured mass loss

and within the range of “Good” when validated against calculated mass loss (E = 0.74, between

0.5 and 0.75).

Fig 3. Results from model calibration: Comparing the simulated log mass loss fraction to the measured loss

fraction in situ (MLML) and the calculated loss fraction based on the disk wood density loss (CLML); black dashed

line, regressed relationship between the measured mass loss and the simulated loss; orange dashed line, regressed

correlation between the calculated mass loss and the simulated loss; green line, 1:1.

https://doi.org/10.1371/journal.pone.0254408.g003

Fig 4. Results from model validation: Comparing simulated log mass loss fraction to measured loss fraction in
situ (MLML), and the calculated loss fraction based on the disk wood density loss (CLML); black dashed line,

regressed relationship between the measured mass loss and the simulated loss; orange dashed line, regressed

relationship between the calculated mass loss and the simulated loss; green line, 1:1.

https://doi.org/10.1371/journal.pone.0254408.g004

PLOS ONE Coarse Woody Debris Decomposition Assessment Tool: Model validation and application

PLOS ONE | https://doi.org/10.1371/journal.pone.0254408 July 9, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0254408.g003
https://doi.org/10.1371/journal.pone.0254408.g004
https://doi.org/10.1371/journal.pone.0254408


Application

To further test the model and demonstrate a practical application, we simulated CWD decom-

position following the massive biomass blow-down following Hurricane Hugo in 1989. Our

simulations tracked the rapid decomposition of the CWD with an estimated 1.6% of the origi-

nal CWD mass (130 Mg ha-1) following the Hurricane Hugo remaining 30 years after the

storm. The decomposition pattern followed an exponential function (Fig 5), with a decomposi-

tion constant of 0.132 y-1 based on the single exponential model with an intercept forced to

100% of the initial CWD mass (100%), and about 0.139 y-1 based on the exponential model of

the simulated decomposition without forcing the intercept. However, the R2 (squared Person’s

correlation coefficient) was high (>0.99) for both exponential equations with and without

forcing the intercept (Fig 5).

The CWDDAT also accounts for transfer of CWD-C into the forest floor and mineral soil.

A small amount of fine woody debris (0.056% of original mass) derived from CWD decompo-

sition remained on the forest floor, and a small amount of C was incorporated into the mineral

soil due to leaching. The predicted DOC incorporated into soils over the 30 years was 30.3 g C

m-2 in total, accounting for 0.474% of the total CWD resulting from the hurricane. The pre-

dicted particulate organic carbon (POC) incorporated into the mineral topsoil was 0.13 g C m-

2 in total, only about 0.002% of total C loss to the CWD decomposition over 30 years.

Decomposition of CWD in WS80 was primarily mediated by fungi, accounting for approxi-

mately 72.0% of the total CWD mass loss over the last 30 years. Termites, another key decom-

poser, accounted for approximately 24.5% of the total CWD mass loss. The contributions of

other decomposers (including bacteria and beetles) to CWD decomposition were small,

accounting for approximately 3.5% of the total mass loss.

Fig 5. Mass attenuation of CWD on WS80 watershed after Hurricane Hugo on the Santee Experimental Forest,

South Carolina due to decomposition; black dashed line is regressed without forcing the intercept to 100% of the

initial wood mass; red dashed line is regressed with forcing the intercept to100% of the initial wood mass; the

initial wood mass was 130 Mg ha-1, based on the damage inventory [30, 35].

https://doi.org/10.1371/journal.pone.0254408.g005
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Discussion

Model calibration and validation

The four model evaluation metrics consistently showed that the CWDDAT model is applicable

for assessing CWD decomposition in forests across a wide bioclimatic range. However, those

metrics varied depending on the basis for comparison; for example, the calibration perfor-

mance efficiency with the measured CWD mass loss (E = 0.71) was less than the calculated

CWD mass loss (E = 0.87). This difference in model performance might be related to the errors

between measurement and calculation (Fig 6). The predicted means for model calibration

were 10.8 and 8.1% lower than the MLML and CLML, respectively. The simulated mean for

validation was 2.1% lower than the measurement, but 3.6% higher than the calculated value.

The predicted average wood mass loss from all samples, including those used to calibrate and

validate the model, was 5.4% lower than the measured value, and 1.4% lower than the calcu-

lated mean, reflecting that the model slightly underestimates CWD decomposition rates.

Since the simulation results are compared against two different estimates of mass loss, the

differences in model performance metrics as compared to the "measured" or "calculated" mass

loss essentially represent uncertainty in the estimate of mass loss. The important aspect to con-

vey is that the model performance was good, regardless of the source of the mass loss estimate.

Fig 6 is important in showing the uncertainties between the "measured" and "calculated" mass

loss estimates; it shows that generally mass loss "measured" > "calculated". However, impor-

tantly, the model did a fine job predicting decomposition across a wide range of mass loss over

the 6 years (differences in mass loss fraction among the logs: <0.02–0.78).

The differences in model performance relative to the basis for comparison reflects both

uncertainties within the model algorithms and in the variables used for comparison. The chal-

lenge in assessing wood decomposition is to obtain a metric (e.g., mass, wood density) that is

representative of the log at each time-step assessed. Since the FWDE is a long-term study, it

was not possible to destructively sample entire logs, so weighing the entire log was used to

overcome some of the limitations associated with only using samples from the end-of-log

disks to represent the log decomposition. However, the assumption that the moisture content

from the disk samples represented the log is also problematic, since the disk has one surface

Fig 6. Measured vs calculated wood mass loss based on the disks collected from FACE logs in the nine EFs; red

dashed line, regressed relationship between the measured mass loss and calculated loss; green line, 1:1.

https://doi.org/10.1371/journal.pone.0254408.g006
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exposed. Accordingly, if the sample moisture content were less than the mean for the entire

log, the measured log mass would be overestimated. Analogous issues arise when results from

field incubation studies are used to infer decomposition of CWD [2, 11, 22]. However, it’s

highlighted in this assessment when to two, albeit not independent, metrics are used as the

basis for model comparison.

Reassuringly, both the model calibration and validation showed that the model performed

well for assessing CWD decomposition across a wide range in climatic conditions, forest types

and soil in the continental USA. However further assessment of the CWDDAT is warranted to

affirm that it is robust across all forest lands. The current assessment utilizes relatively small

logs, especially in comparison to the large trees typical of the tropics or pacific north west

region. Accordingly, trials that focus on large diameter material is suggested. Similarly, it well

established that wood decomposition rates vary among species [19, 22, 45–47], hence testing

the model against other species is needed, especially for the dense tropical species. Similarly,

testing across the highly variable boreal zone is warranted [5, 48, 49]. Overall, this work dem-

onstrates that the CWDDAT [29] is a useful tool for assessing CWD decomposition.

Model application

CWD decomposes quickly in warm and humid locations. Accordingly, the fast CWD decompo-

sition at WS80 reflects the subtropical forest in South Carolina, and the presence of subterranean

termites. As a result, over 50% of CWD produced by Hurricane Hugo in 1989 had decomposed

within 6 years (T50� 6). The predicted main contributor of CWD decomposition on Santee is

fungi, accounting for about 72% of total CWD mass loss, as the warm and humid climate regime

is good for fungal growth [2]. Termites contributed about 24.5% of the total wood mass loss

because Santee is located in the area with the highest risk of termites in USA [36].

Although the estimated mean CWD mass loss from the wood decomposition on WS80 fol-

lowed an exponential decomposition function, there was a small difference in the decomposi-

tion constant (k) with and without forcing the intercept of the regressed function to the initial

wood mass; forcing the intercept to 100% of the initial mass at T0 seems appropriate to have

the function reflect the actual starting condition. The effect of altering the intercept changes

the half-life (T50) from 5.0 to 5.2 years based on the decomposition constants from regressed

exponential equations with and without forcing the intercept, respectively, reflecting that there

is a small time-lag in this subtropical climate regime. However, when Eq 7 was used to assess

CWD decomposition, the dual constants k1 and k2 were 0.1535 (k1) and 0.1303 (k2), respec-

tively, and T50 was approximately 6.2 years. Accordingly, the simulated CWD decomposition

constant on WS80 was within the global range of CWD decomposition and within the range

in North America [25, 50]. The CWD decomposition constant from this study was also similar

to that reported for other studies from similar climatic conditions [50–52].

The temporal contributions of decomposers to the mass loss of the CWD in WS80 were

substantially different; the estimated contribution of termites was approximately 72% within

the second year, and their contribution decreased rapidly to 28.0% of the total annual decom-

position 2 years after the hurricane and their proportion of total decomposition continued to

decline after year 2. Similar to termites, the contribution of beetles to the CWD decomposition

decreased over time ranging from 5.3% to null. In contrast, the contributions of fungi to

decomposition increased with time. Fungal respiration increased from 21.6% of the total

annual mass loss within the first year to�70% after one year, and remained over 70% of the

total annual wood mass loss until the end of the simulation time period (30 years). Bacterial

respiration increased from 0.4% in the first year to 3.5% of the total annual mass loss in 2017,

reflected that bacterial contribution to CWD decomposition was small overall [53].
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The decayed logs remained the primary pool of CWD (average 98.1 g C m-2) after 30 years.

The predicted amount of fragmentation during CWD decomposition was approximately 23.5

g m-2 y-1, with approximately 7.3 g m-2 remaining in the forest floor at the end of 30 years. The

large difference in the mass of fragments produced and that remaining on the floor is due to

decomposition of the fragmented material within the forest floor. There was only a small

amount of wood C as POC (0.13 g C m-2) from CWD decomposition, which was incorporated

into the soil as a result of leaching.

DOC from CWD decomposition was the primary pathway for C incorporation into the

soil [54]. The 30-year predicted total DOC from the CWD produced by Hurricane Hugo

was about 35.5 g C m-2, and the net incorporation was about 30.3 g C m-2, a rate of approxi-

mately 1.01 g C m-2 y-1 on average, reflecting that DOC is the main contributor of wood C

into the underlaying mineral soil. DOC incorporation into soil changed non-linearly over

time, increasing from 0.16 g C m-2 y-1 in the first year to 5.9 g C m-2 y-1 in the 10th year

after the hurricane. Transfer by DOC decreased substantially after year 10, from 5.9 g C m-

2 y-1 in the 10th year to 0.09 g C m-2 y-1 at the 26th year due to a reduction in CWD decom-

position. The DOC incorporated into soils can be absorbed or aggregated and therefore

maintained in soils for a longer time [55, 56]. These simulation results provide context for

suggesting the magnitude of the transfers of C from CWD into the soil. Those predictions

are predicated on functional relationships [29], but those functions warrant testing through

field studies.

This application demonstrates the utility of the model for assessing CWD dynamics, in this

case following a large episodic event. Similarly, the model could be used to assess the annual

turnover of CWD in forest stands affected by different management regimes or climate scenar-

ios. The fine performance of the model across contrasting forest landscapes suggests the

opportunity to conduct large-scale assessments of CWD dynamics. The availability of national

forest inventory data that includes periodic assessments of CWD stocks (e.g., Forest Inventory

and Analysis data in the U.S.) suggests an opportunity to assess the model performance among

multiple forest types within or among regions. Such a large-scale assessment would further test

the model, and if successful, provide a tool that could be used in conjunction with forest bio-

mass simulators to fully assess the dynamics of forest biomass.

Conclusions

The CWDDAT model used to assess CWD decomposition in forests was evaluated against

wood mass loss observed from nine sites with different ecological conditions across the conti-

nental USA. Four quantitative model evaluation methods consistently demonstrated that the

model is an effective tool for assessing CWD decomposition and the associated C fluxes in for-

ests. Simulating CWD decomposition following Hurricane Hugo also demonstrated that this

model is applicable for simulating responses at the watershed-scale. CWDDAT was built to

reflect biogeochemical processes mediating wood decomposition; the calibration, validation

and application simulation results demonstrate that those processes are sensitive to the pri-

mary factors known to regulate wood decomposition. The CWDDAT model incorporates

both micro-organisms and arthropods as mediators of CWD decomposition, providing a basis

for assessing the contributions of decomposer communities.

The CWDDAT model provides the basis for simulating the C cycle associated with forest

CWD. The tool has considerable utility for assessing functional linkages between CWD

decomposition and soil C, thereby providing a basis to the interactions of forest management,

disturbance regimes (e.g., tropical storms), or climate change on this important component of

the forest C cycle. Further evaluations of the model are warranted, and we hope that the
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findings reported here stimulate further studies to further strengthen the basis for model

development and applications.
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