Long-term impacts of fertilization and stocking rate decisions on soil fertility

Long-term Impacts of Fertilization and Stocking Rate Decisions on Soil Fertility

Monte Rouquette, Jr.
TAMUS Regents Fellow & Professor
Texas A&M AgriLife Research
Overton, TX

2018 Georgia Forages Conference Georgia Cattlemen's Convention

GLOBAL ROUNDTABLE for SUSTAINABLE BEEF, 2016

"Sustainable Beef"

- Socially Responsible
- Environmentally Sound
- Economically Viable

SUSTAINABLE

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Long-Term Stocking of Bermudagrass Pastures and Nutrient Cycling

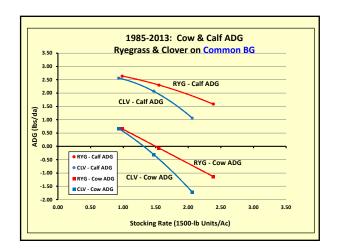
- Cow-Calf Stocking on COM and COS in 1968
- Complete Fertilizer through 1984
- From 1985 to present
 - · Three Stocking Rates; Forage Mass
 - · N Fertilizer + Ryegrass
- · No N Fertilizer + Clover + K and/or P
- Soil Nutrient Status; Soil Depth
- Forage Persistence
- Cow-Calf Gain/An & Gain/Ac

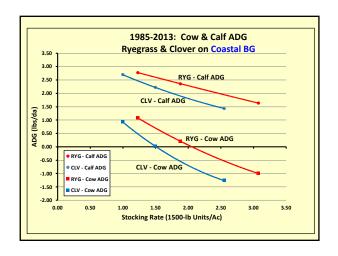
Most Important Management Strategies Affecting Ryegrass or Clover Establishment & Growth

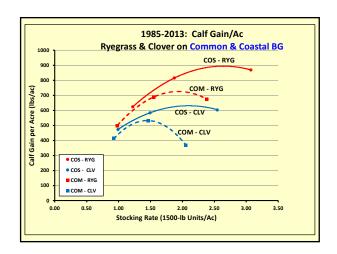
- Soil pH & Other Nutrients
- Variety Selected for Environment
- Soil x Clover Adaptation
 - Sandy, Upland, Well-drained = Crimson
 - Transition Soil/Site = Arrowleaf, Ball, Red
 - -Bottomland = White

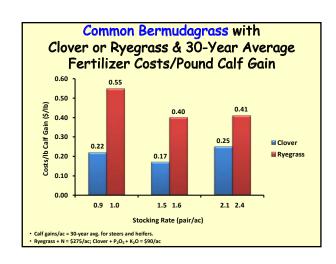
Long-term impacts of fertilization and stocking rate decisions on soil fertility

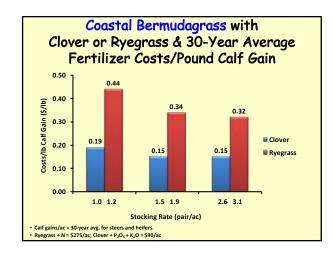
Long-Term Stocking Rates and Fertility Regimens Affects Forage Species Diversity and Sustainability of Bermudagrass Pastures



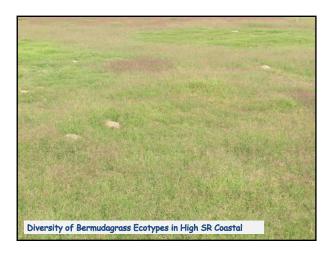




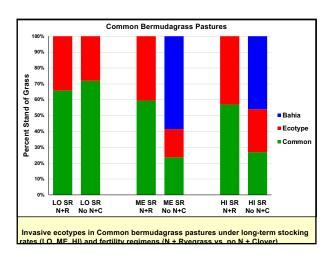


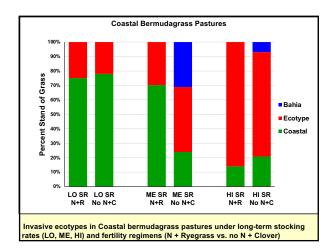

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Dr. Monte Rouquette Regents Professor Texas A&M Univ.



Long-term impacts of fertilization and stocking rate decisions on soil fertility


Soil Organic C and N in Pastures


- Increase in SOC and SON 32 yrs after establishment of bermudagrass
- Grazing Strategies affected C & N Sequestration
 - Low Stocking Rate > High Stocking Rate
 - N + Ryegrass > no N + Clover

Hons, TAMU; Wright, Post doc, TAMU; Haby, Overton; Smith, Overton

Dr. Monte Rouquette Regents Professor Texas A&M Univ.

Implications from Long-Term Stocking of Bermudagrasses & Fertilization

- Prolonged, high STK under continuous stocking can cause substantial loss of COS and COM.
- Invasive bermudagrass ecotypes allowed for maintenance of bermudagrass in pastures.
- Reduced stocking rate on non-N pastures.
- Pastures without N-fertilization for > 30 years.
 - * High STK allowed invasion of ECOT & Bahiagrass.
 - * Low STK; 1.0 for Coastal & 0.8 for Common allowed for persistence of 75-80% of each originally-established bermudagrass.

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Good news.....

Bad news.....

Nitrogen Drives Grass Production

Dr. Monte Rouquette Regents Professor Texas A&M Univ.

Forage Legumes as Nitrogen Source for Pastures

- Nitrogen is the first-most limiting nutrient for grass pastures on most Southeastern US soils.
- Forage legumes fix atmospheric N through symbiosis with Rhizobium bacteria.
- Arrowleaf or Crimson Clover overseeded on grass pastures can fix 80 to 100 lbs N/acre/year.
- N-Fixation occurs in the leaves and stems of clover.
- N-Transfer to grass is accomplished through grazing and recycling of nutrients from animal excreta.

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Nutrient Cycling

Effectiveness of Nutrient Cycling on Pastures

- Stocking Rate
- Stocking Method
- Forage Nutritive Value

Nutrient Cycling on Pastures

Plant nutrients, N, P, K, etc., taken up by plant and returned to the soil for use again.

A use-return-reuse process.

Very Small Amount of plant food nutrient removed from pasture system by animal

Sources & Pathways of Nutrient Cycling

- Leaf-stem loss;
 accumulated as litter
- Root decay
- · Animal excreta

Nutrients in Excreta

- Function of diet
- Fecal N ≈ constant/unit DM intake
- N in urine is diet-dependent
- P in feces and urine
- K primarily in urine; 25% in feces

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Management Strategies and Costs

Fertilizer Management Strategies

- Eliminate <u>ALL</u> fertilizer use
- Reduce fertilizer to "minimum" applications
- Continue fertilizer applications as in the past...or increase rate

Management Options When Eliminating <u>ALL</u> Fertilizer

- Take soil test
- Overseed clovers for N-fixation ... IF... soil status (pH, P) is acceptable
- Reduce stocking rate Cull
- Lease additional pasture
- Purchase hay based on quality and weight
- Use herbicides; broad-leafed weeds, woody-species

Management Options Using Minimum Fertilizer Applications

- Take soil test
- Apply lime for clovers
- Overseed with clovers and/or ryegrass
- Strategic N application
 - Best "Bang for the Buck" 50-100 lb/ac
 Nitrogen in 1-2 applications
- Purchase hay based on quality and weight
- Evaluate stocking rate cull
- Use herbicides

Management Options When Fertilizing as Usual or Increased Rate

- · Take soil test
- Apply lime for clovers
- Overseed with clovers, ryegrass, small grains
- · Strategic N applications
- Evaluate animal performance cull/buy
- Increase weaning weights / rates
- · Consider stocker-replacement heifers
- Increase Bermudagrass DM & Sell Hay
- Use herbicides

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Is the Strategy to Reduce
Fertilization Rate...OR... to be More
Efficient with Utilization??

- Application of "proper" nutrients
- Utilization of pasture/hay
- Opportunities for Nutrient Cycling

For Bermudagrass Pastures

- Fertilizer Costs may NOT be the Number 1 problem....
- Matching Animal Requirements and Forage Quality may be the most Costly Problem...
 Management Strategy

Bermudagrass for Pasture & Hay

- Pasture fertilization recommendations typically based on routine soil test...
 BUT ... N-fertilization based on potential yield and economic expectations,... AND... in general does not account for residual soil N,
- N rates in grazed pastures may range from 50 to 300 lbs/ac per year

Management Strategies and Costs

Management Options with Increased Costs

Option or Strategy

 Reduce and/or Eliminate Fertilizer

Expected Results

- Reduced DM
- Reduced Nutritive
 Value
- Increased Species Diversity
- Reduced Stocking
- · Increase Herbicides

Management Options with Increased Costs

Option or Strategy

 Reduce and/or Eliminate Hay Production & Use

Expected Results

- Purchase Hay
- Requires Deferred WSPG Pastures
- Requires
 Supplementation
 and/or Winter
 Pasture
- · Change Calving Date

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Management Options with Increased Costs

Option or Strategy

Shift Calving
 Dates to Spring Summer and
 eliminate winter
 pasture for cows

Expected Results

- Reduced Weaning Weight
- Reduced Pregnancy
- Retained Ownership and Winter Pasture
- Cow Genotype to include Percent Brahman

Where are we headed?

Nitrogen Drives Grass Production

Good news....

Bad news....

Impact of Long-Term
Stocking Rates & Fertility
Regimens on
Stand-Maintenance,
Genetic Diversity,
& Sustainability
of
Bermudagrass Pastures

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Impact of Long-term
Stocking Rates & Fertility
Regimens on
Stand-Maintenance and
Genetic Diversity
of
Bermudagrass Pastures

Effects of 37 years of Stocking & Fertility Regimens on Soil Chemical Properties in Bermudagrass Pastures

Summary

- No detrimental impacts on soil chemical properties.
- Nutrient recycling in soil-plant-animal systems can sustain long-term pasture productivity while preserving soil resources, and without environmental contaminants on these soil-Vegetational Zone pastures.

Long-term impacts of fertilization and stocking rate decisions on soil fertility

Requirements for Successful Implementation of Management Strategies

- · Forage-Animal Information; Facts
- Comparative Databases (minimum perceptions)
- · Targeted Objectives with Flexible Application
- Risk Involvement Risk Aversion; Equity Stability
- · Economy of Scale
 - Financial Plan
 - Borrowing Power; Access to Funds
 - Understanding Banker/Lender

Strategies for Reducing Costs of Forage and Pastures for Cow-Calf Operations

- Nitrogen Fertilization;
- Alternative Forage Varieties
- Reduced Need for Stored Forages
- Reduced Forage Losses and Feeding Costs of Harvested Forages
- Reduced Forage Risk Management
- * Benson 2010

Cow-Calf Sustainability in Southeastern US

- Land-Use & Sale Options
- Retained Ownership & Management Considerations
- Forage Options for Pastures
- Soil Fertility & Fertilization Options

mis-Management Strategies Results in non-Sustainable Pastures and may Effect:

- Soil Erosion
- Weed-Invasion
- · De-Stocking; Sell Cattle
- · Re-Directions for Land Area
- Sale of Property

	Georgia Forages Conference Long-term impacts of fertilization and stocking rate decisions on soil fertility								
L	Long-term	iiipacts o	i ierulizat	ion and s	Stocking i	ate decis	OIOIIS OII	Soli lertility	