FERTILIZATION PRIORITIES

April 2011 Georgia Cattleman

Dennis Hancock, Forage Extension Specialist The University of Georgia

The good news is that cattle prices are giving some much-needed relief. The bad news is that fertilizer prices threaten to drag us down. At current prices, fertilizer costs constitute up to 85% of the total variable costs in the production of pasture and up to 75% of the variable costs in hay production. Call me pessimistic, but I don't see much relief coming on that front.

Certainly, producers should look for ways to reduce fertilizer costs in the production of forage. But, there is a difference between cutting costs and cutting corners. The problem is that if the reduction in fertilizer costs results in reduced yield (i.e., less fertilizer often equals lower yields), then the cost of the forage per ton (or pound) can actually go up! The reason for this can be seen in the following equation for calculating the unit cost of forage production:

$$
\text { Cost of Forage }(\$ / \text { ton })=\frac{\text { Total Cost }(\$ / \text { acre })}{\text { Forage Yield (tons/acre) }}
$$

Consider Table 1. Let's assume in this example that the field we are dealing with has a yield potential of 6 tons/acre for hybrid bermudagrass hay. Based on current prices, the average cost of production for hybrid bermudagrass hayfields is approximately $\$ 750$ /acre (or $\$ 125 /$ ton). If production costs are reduced and yields essentially remain the same, the unit cost ($\$ / t o n$) decreases (green cells). However, it is likely that substantial reductions in costs in forage production must come from fertilizer expenditures (because fertilization constitutes such a big part of the total variable costs). Indiscriminant reductions in fertilizer use will likely lead to reductions in yield. This may very well result in an increase in the unit cost ($\$ /$ ton) of the forage (red cells). Thus, it is critical to remember that cutting costs in forage production should be done in a way that has a minimal impact on the forage yield.

Table 1. The unit cost of forage produced under different levels of cost (relative to the current average for hybrid bermudagrass hay) at different levels of forage yield.

Cost of Production Compared to Average						
Yield	$\mathbf{6 0 \%}$	$\mathbf{7 5 \%}$	$\mathbf{9 0 \%}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 1 0 \%}$	$\mathbf{1 2 5 \%}$
(tons/ac)	------------ Unit Cost of the	Forage	$(\$ / t o n)$	-----------		
$\mathbf{8}$	$\$ 56$	$\$ 71$	$\$ 85$	$\$ 94$	$\$ 103$	$\$ 118$
$\mathbf{7}$	$\$ 64$	$\$ 80$	$\$ 96$	$\$ 107$	$\$ 118$	$\$ 134$
$\mathbf{6}$	$\$ 75$	$\$ 94$	$\$ 113$	$\$ 125^{*}$	$\$ 138$	$\$ 156$
$\mathbf{5}$	$\$ 90$	$\$ 113$	$\$ 135$	$\$ 150$	$\$ 165$	$\$ 188$
$\mathbf{4}$	$\$ 113$	$\$ 141$	$\$ 169$	$\$ 188$	$\$ 207$	$\$ 235$
$\mathbf{3}$	$\$ 150$	$\$ 188$	$\$ 225$	$\$ 250$	$\$ 275$	$\$ 313$

The average cost of production for a hybrid bermudagrass hayfield is approximately $\$ 750 /$ acre. If the yield goal is 6 tons/acre, the cost of the forage is $\$ 125 /$ ton. If costs are decreased 10% and forage yield decreases 1 ton/acre, then the cost/ton actually increased from $\$ 125$ to $\$ 135 /$ ton.

Soil Management Priorities

So, how is it possible to reduce forage production expenses without compromising yield? The following priorities can help reduce fertilizer expenses or at least make the investment in fertilizer more efficient.

Soil Test and Follow Fertility Recommendations. If you do not soil sample and apply fertilizer and/or lime based on the results of those tests, it is likely that you are either 1) not putting on enough fertilizer/lime and therefore the forage yield is below its potential, or 2) putting on more fertilizer than is required to meet your yield goals and, therefore, wasting money. Few other practices in the entire enterprise can improve the profitability of the cattle operation more than soil testing and following UGA fertility recommendations.

Do NOT Cut Back on Lime. Keeping an optimum soil pH will ensure that soil tilth is maintained, root development is encouraged, and (most importantly) the nutrients in the soil are freely available to the plants. If the soil pH drifts much below 6.0 , the availability of some nutrients in the soil will decrease and, in some cases, other nutrients can reach toxic levels. The availability of nitrogen (N), phosphorus (P), and potassium (K) is severely reduced as the soil pH declines (Figure 1). This can translate to a major waste of one's "fertilizer dollar." For example, Table 2 demonstrates the cost of this inefficiency in an example comparing a soil pH of 5.6 vs . 6.2 . Of course, lime applications should rectify soil pH problems for several years. However, lime applications usually take 6-12 months to affect a substantial change in soil pH . So, major adjustments in soil pH should be made well in advance of the addition of large quantities of fertilizer.

Table 2. A comparison of the annual value of decreased fertilizer efficiency in a soil where the pH is 5.6 relative to a soil with a pH of 6.2 . This example uses a moderate to low amount of fertilizer and represents the cost of inefficient nutrient use incurred in one year.

Nutrient	Amt. Used Annually	Unit Price	Dec. in Efficiency	Value of Decrease
	$($ lbs/acre $)$	$(\$ / / b)$		$(\$ / a c r e)$
\mathbf{N}	200	$\$ 0.65$	35%	$\mathbf{- \$ 4 6}$
$\mathrm{P}_{2} \mathrm{O}_{5}$	50	$\$ 0.75$	50%	$\mathbf{- \$ 1 9}$
$\mathrm{~K}_{2} \mathrm{O}$	150	$\$ 0.50$	10%	$\mathbf{- \$ 8}$

Resulting from the lower soil pH .

Focus Your Resources. Apply fertilizer to pastures or fields where soil test P and K values indicate an economic response to the addition of the fertilizer AND the soil pH is in the optimum range. If the soil pH is inadequate, added P and K fertilizer will be less available to the plant. Attempts to raise P and K levels in soils that have a low soil pH will result in a lack of return on the fertilizer investment. Instead focus on raising the soil pH value in those fields.

Avoid the Use of Standardized Blends. Standardized blends (e.g., 10-10-10, 17-17-17, etc.) of homogenized (uniform particle size) fertilizer products are commonly sold. Unfortunately, these blends
are usually more expensive than custom mixed fertilizer products that have been tailored to the needs of the producer (Table 3). Using current prices, one can see that the use of a custom mixed fertilizer can save over $\$ 100$ /acre as compared to a standardized blend when fertilizing a bermudagrass hay field.

Table 3. A comparison of three common strategies for fertilizing hybrid bermudagrass hayfields. ${ }^{*}$

Fertilizer Strategy	Product Used	Amount	Product Price
Standard Blend	$17-17-17$	(lbs/ac)	(\$/ac)
Mixed Fertilizer	Urea $(46-0-0)$	1471	$\$ 430.27$
	DAP $(18-46-0)$	Total:	$\$ 430.27$
	Potash $(0-0-60)$	141	$\$ 462.50$
		375	$\$ 112.50$
Poultry Litter	$3-3-2$	Total:	$\$ 321.15$
	Potash $(0-0-60)$	1000	$\$ 175.00$
		110	$\$ 12.50$

Based on a target fertilizer rate of 250-65-225 (i.e., assumes medium soil test level P \& K).

Use Animal Wastes When Available, but be Strategic. As noted in Table 3, the use of poultry litter (and supplementing to provide enough K) can substantially reduce fertilization costs. Certainly, poultry litter can be a cost-effective and beneficial fertilizer source. After many years of poultry litter applications, however, nutrients can accumulate to very high levels in these soils. Note from Table 3 that if soil test P and K levels are sufficient and only N is needed, then the total cost of fertilization would be $\$ 162.50 /$ acre (i.e., the cost of urea fertilizer, in this instance). If the poultry litter is produced on the farm, the recommended strategy would be to sell the animal waste and purchase N fertilizer.

Split Your Nitrogen Applications. Fertilizer recommendations are given as totals for the season. For some nutrients, the entire amount can be applied with little economic or environmental risk. However, high rates of N application at the beginning of the growing season can result in unnecessary risk. This can be especially risky when conditions for leaching, volatilization, late frosts, or drought occur. Split applications of N also reduce the risk of nitrate toxicity. Further, long-term research has shown that yields can be increased by $5-10 \%$ and N use efficiency can be as much as $25-30 \%$ higher when N fertilizer applications are evenly split among 3-4 applications (or more) during the season.

Maintain Good Potassium Levels. When K is deficient, bermudagrass stand decline is inevitable. Symptoms of stand decline are poor stress tolerance, increased incidence of leafspot diseases, poor vigor, poor winter hardiness, and the death of large, irregularly-shaped patches. When K is readily available, bermudagrass stands are more vigorous, more dense, and high yielding.

More Information

Additional information about soil fertility management in pastures in the Southeast can be found by visiting our website at www.georgiaforages.com. If you have additional forage management questions, contact your local University of Georgia Cooperative Extension office by dialing 1-800-ASK-UGA1.

got questions?

Have a question or topic that you want Dr. Hancock to address? Email him at: questions@georgiaforages.com.

