Pecan Irrigation

Lenny Wells UGA Horticulture

What do all plants (including pecan trees) need most?

Sunlight+Water = carbs = Tree growth and Nut Production

Effect of Sunlight and Air Movement on Yield---2012

Sunlight=1843 lum/ft² Yield=137.4 lbs/Tree Sunlight=1005 lum/ft² Yield=93.6 lbs/Tree

Effect of Sunlight and Air Movement on Yield---2013

Sunlight=1176 lum/ft² Yield=110.6/tree Sunlight=996 lum/ft² Yield=68 lbs/tree

WHEN GROWING PECANS: IF YOU HAVE TO CHOOSE BETWEEN WATER AND FERTILIZER......

CHOOSE WATER!

And Remember: Its not how much you water, but when

What happens to pecans when drought occurs:

*Dates vary with season, location, and cultivar. Diagrams modified from Wolstenholme, B. N., and J. B. Storey, 1970. Pecan Quarterly 4(4):15-19.

Fruit-drop Pattern

Nut Sizing

July Drought Results in Greater Fruit Abortion

Sparks, 1989

September drought---leaf abcission/poor kernel filling

Effect of Drought During Nut Sizing

A=Irrigated B=Non-irrigated

Effect of Drought During Kernel Fill

Sparks, 1992

Pecan Water Stress is a function of water + soil depth

How Do Pecan Trees Use Water?

Water diffuses into guard cells which causes them to open. On hot/dry days, the guard cells have less water, they relax and the stoma close

Pecan Water Use

- Pecans extract most of their water from the upper 32 inches of the soil profile
- Need 60" of water per year
 In the SE, rainfall can account for 50-67% of needs
- Pecan trees can use as much as 350 gal/day
- Greatest demand is during August/September
- Pecan Irrigation systems are designed to be supplemental to rainfall
- At 12 trees per acre, Drip/Microjet system capacity should be <u>3600-4200</u> gallons/acre/day

Costs of Drip Irrigation

- System Parts and Installation: \$800 per acre
- Well & Pump: 4" + 5 hp = \$7800

6"+30 hp = \$34,000

• Operation Cost: \$40-\$60 per acre

Value of Fertilizer

Fertilizer Rate (Ibs/acre)	Yield/Acre (Ibs)	% Increase	Value of Increase (@\$1.34/lb)
0	1696	0	0
400 lbs biennially	1837	8.3	188.94
400 lbs annually	2211	30	690.10
800 lbs annualy	1577	-7.0	-159.46

'Stuart'

Worley, 1974

Value of Irrigation

Water Application (Gal/Day/Acre)	Yield/Acre (Ibs)	% Increase	Value of Increase (@ \$1.34/lb)
0	1034	0	0
1200	1374	32	455.60
3600	1761	70	974.18

'Stuart'

Daniel, J.W. 1982

Return on New Irrigation System Example: 25 acre orchard

Assumes \$1.34/lb.

- Cost of new irrigation system: \$27,800
- Value of increase in production: \$974.18/acre X 25=\$24,354.50
- 27800-24354.50=\$3445.50 left to recover in year
 2
- At \$2.00/lb, the value of the increase is \$1454/acre
- *\$1454X25=\$36350*
- **36350-27800=+8550**

Return on New Irrigation System Example: 100 acre orchard

- Cost of new irrigation system: \$114,000
- Value of increase in production: \$974.18/acre X 100=\$97,418.00
- 114,000-97418= -\$16,582

At \$2.00/lb: \$145,400-114,000=+\$31,400

Assumes \$1.34/lb.

Pecan Irrigation Systems

- Solid Set
 - Expensive
 - Poor water use efficiency
 - Water large area quickly

- Sprinklers often in every other middle
- Pump capacity should be at least 75 gpm/A

Drip Irrigation

- Lateral lines normally 6-8 ft from tree
- Most emitters used are 2 gph
- 8-16 emitters per tree

Pecan Irrigation Systems

- Microjet
 - Same benefits as drip
 - Larger wetted area
 - Best system for establishment of young trees

Results

Relationship between stem water potential (ψ) of non-irrigated pecan trees and volumetric soil moisture on Tifton loamy sand (y=0.0259x-1.0421, R²=0.28).

- Water Stress on pecan occurred at about -0.78 MPa using the pressure chamber to measure stem water potential
- Regression analysis suggests that irrigation scheduling for mature pecan trees may be needed when volumetric water content reaches 10-11% on Tifton loamy sand
- Pecan trees may undergo water stress due to crop demand during the kernel filling stage regardless of soil moisture

Volumetric Soil Moisture (%)

Relationship between stem water potential (ψ) of non-irrigated pecan trees and volumetric soil moisture on Tifton loamy sand from April-July 2012 (y=0.0277x-1.079, R²=0.35).

Volumetric Soil Moisture (%)

Relationship between stem water potential (ψ) of non-irrigated pecan trees and volumetric soil moisture on Tifton loamy sand from August-September 2012 (y=0.0017x+0.7263, R²=0.0014).

Pecan Irrigation Schedule Recommendations for Bearing Orchards

Month	% Full Capacity	Gallons/acre/day
Amril	1 70/	612 690
April	1/%	012-080
May	26%	936-1040
June	33%	1188-1320
July	40%	1440-1600
August	100%	3600-4000
September	r 100%	3600-4000

*If you receive 1" or more of rain from bud-break to the onset of kernel-filling, turn the system off for 3 days.

*Throughout the kernel filling period, apply irrigation daily regardless of rain events up to 2". With a 2" rain during kernel filling, turn the irrigation off for 3 days.

Sandy Soils=Use higher end of rate Clay Soils=Use lower end of rate

Summary

- IRRIGATION IS A <u>NECESSITY</u> FOR CONSISTENT PECAN PRODUCTION
- Water is key to many important processes involved in the development of a pecan crop
- Well capacity for pecans should be approx. 4000 gal/acre/day
- Irrigation provides the most immediate results and the fastest return on investment of virtually any management practice you can use