Pecan Orchard Design and Establishment

Andrew Sawyer Southeast Georgia Area Pecan Agent

Type I	Pecan	Type II: Flowers First
	Pollination	
		CONT -
Catkins first		

Receptivity=Red Pollen Shed=Yellow 015

extension.uga.edu 1-800-ASK-UGA1

Providing Sufficient Pollination

- Fruit set declines with distance from pollinator
- In off year, yield may be as much as 30% less on trees more than 2 rows (80') from pollinator
- Pollinator should be placed no more than 150' from main variety

Pollinizer Guidelines

- Plant both Type 1 and Type 2 cultivars in any planting.
- Recommendations vary
 - 5th Tree on every 5th Row
 - 15% pollinators
 - 150 ft minimum distance
 - Alternate 4 rows: 2 rows OR 3 rows: 1 row
- Weather and differential crop stresses can affect bloom patterns in some years.
 - Diversity is Key:

4 varieties better than 3; and 3 varieties better than 2, etc.

Pollination & Planting Design

Block Planting

extension.uga.edu 1-800-ASK-UGA1

Every 5th Tree on Every 5th Row

extension.uga.edu 1-800-ASK-UGA1

Average Maximum Temperature March

extension.uga.edu 1-800-ASK-UGA1

Green immature catkins with no evidence of anther dehiscence suggest that Stuart is a few days from pollen shed.

> •Because many female flowers on adjacent Desirable trees are already receptive, they cannot be pollinated by Stuart, because they will no longer be receptive when Stuart pollen is shed.

Waxy, glistening, fully developed stigma indicating receptivity of 'Desirable' flower is near peak.

Effect of Self-Pollination ---Marquard, 1988

	Self Pollination	Cross Pollination
Weight	5.4g	6.5g**
Volume	7.4 ml	8.3ml**
% Pops	11.7%	3.6% ^{NS}

Self Pollination results in: 17% less nut wt 11% smaller volume

Tree Types

- Container grown
 - Plant while dormant works well
 - Spring planting less successful
- Bareroot
 - Plant while dormant:
 January March

#1 (Pre-Plant) Rule for Planting Pecan Trees

DO NOT PLANT PECANS IN POORLY DRAINED SOIL!!

Planting Too Deep

- Most common cause of problems with young pecan trees
 - Trees unable to develop adequate brace roots

Why are trees commonly planted too deep?

When a tree is grafted below soil line, an artificial planting depth discoloration is created when soil is mounded back, and trees are replanted to this depth "the depth they grew in the nursery". They often then sink further as soil settles.

Pecan roots will not develop from the mature-wood, grafted top.

Major roots needed for anchorage cannot develop except underground several inches, where their effectiveness is greatly diminished.

- Planting Depth
 - Better to plant too shallow than too deep
 - Highest lateral root
 even with or just
 under soil line

Planting

- Bareroot:
 - 1. prune root to 18 24 inches
 - 2. remove lateral roots
 - 3. prune top to 4 ft (1/4 1/3).
- Container: prune any wrapped roots at container bottom

Root length at planting

Tree survival & growth depends on new root development, not the existing root system. New roots develop from the cut surface. More important in tighter soils.

Root Pruning

Planting

- <u>Do not allow tree roots to dry</u> <u>out</u>
- Heel-in for long term
 - Keep roots moist and covered in field
- Dig with 18" auger, deep <u>enough to hold root system</u>
- Fill hole with same soil
- Fill hole ¼ full of water, add dirt into the hole
- Pack soil, but do not compact
- Protect trunks from sunscald & herbicide
 - Trunk wraps/guards
- Prune top to 4 ft high
 - Faster rate of growth & more vigorous
 - Leave 2 buds

Heeled in soil

Pruning at Planting

Avoid Settling

- Dig hole 2 ft
- Cut taproot if need

UGA extension

THE TWO MOST IMPORTANT FACTORS IN YOUNG TREE SURVIVAL & GROWTH

- Eliminate Weed Competition
- Adequate irrigation

1-800-ASK-UGA1

Vegetation-free Distance in Bermudagrass Sod

- 'Results
 - No effect 1st & 2nd year
 - 3rd year largest tree in 3 24 ft vegetation-free circle
 - 4th year largest tree in 6 24 ft vegetation-free circle
 - 5th & 6th largest in 24 ft vegetation-free circle

YIELD

- Token yield in the 5th & 6th growing seasons.
 - 5th year 6 ft or greater produced most yield
 - 6th year 24 ft dia most yield

 7th growing season 18 lbs/tree (1089 lb/a; 20'x35' spacing) with 24 ft dia.

Fertilization Recommendations for Young Trees • Focus on P,K, Zn---not N!

Rate of 10-10-10/per tree

Year	April	June
1	0	0.5-1 lb
2	1-2 lbs	1-2 lbs
3	2-3 lbs	2-3 lbs
4	3-4 lbs	3-4 lbs

- Apply Zinc Sulfate at 1-3lb per tree for the 1st 3-4 yrs
- 2-3 sprays foliar Zn if deficiency symptoms show
- Mouse Ear Trees:
 - Apply Ni at rate of 1.5 qts/100 gallons

Fertigation

extension.uga.edu | 1-800-ASK-UGA1

If You Fertigate

Amount of N/acre

Year	April	May	June
1	0	0	5 lbs N
2-4	5 lbs	5 lbs	5 lbs

- Apply granular P,K, Zn over the tree row in March or April of years 1 and 2
 - 40 lbs P
 - 40 lbs K
 - 25 lbs Zn Sulfate

How Much Water Do Young Trees Need?

extension.uga.edu 1-800-ASK-UGA1

Young Tree Irrigation---Year 1

Young Tree Irrigation---Year 2

Young Tree Irrigation---Year 2

Young Tree Irrigation

- Treatments:
 - 6.7 gph X 4 hrs X 3
 days/week = 80.4 gpw
 - 14.3gph X 4 hrs X 3
 days/week = 171.6 gpw
 - Non-Irrigated

	Indiv. Leaf	Leaf Length	Mean Leaf	Max Leaf	Chlorophy
	Area		Width	Width	ll Index
Non-	11.9a	6.3a	1.8a	2.8a	11.4a
Irrigated					
80.4 gpw	26.8b	10.3b	2.5b	4.1b	21b
171.6 gpw	21.2b	8.6ab	2.4b	3.8b	24.7b

Drip vs Microsprinkler

Drip vs Microsprinkler Year 1---Seasonal Growth

Drip Vs Microsprinkler Desirable---1st year trunk diameter growth

Pattern of Moisture Spread For Drip vs Microsprinkler

Spreading water over larger soil surface areas is particularly advantageous on coarse, sandy soils (where water from a drip emitter moves very little laterally) and on fine-textured clay soils (where water from a drip emitter may puddle on the surface).

What Herbicides are Safe to Use Around

Young Trees?

• Postmergence:

- Glyphosate, Paraquat, or Glufosinate (1st year) --- burndown
- Sandea (2nd year) nutsedge, pigweed, wild radish
- Aim---pigweed/morning glory
- Venue---wild radish, pigweed, morning glory
- Basagran—some broadleafs and yellow nutsedge
- Poast---annual and perennial grasses
- Select---annual/perennial grasses
- Fusilade---annual/perennial grasses
- Pre-emergence:
 - Surflan (1st year)
 - Prowl (1st year)
 - Chateau (1st year)
 - Alion (3rd year)
 - Simazine (2nd year)
 - Diuron (3rd year) Avoid on sandy soils!

Leaf Scorch of Young Pecan Trees

- Primarily a problem of poor root establishment
- Limitations to root growth
 - Wet spring
 - Wet/Dry extremes
 - Poor soil
 - Water-logged
 - Planting immed. behind pine trees
 - Hard Pan/High water table
- Fertilization

