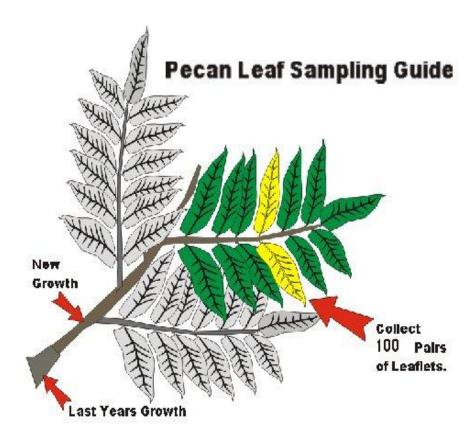
Nutritional Requirements & Fertilizer Management of Pecan


Lenny Wells

UGA Horticulture

Leaf Sampling

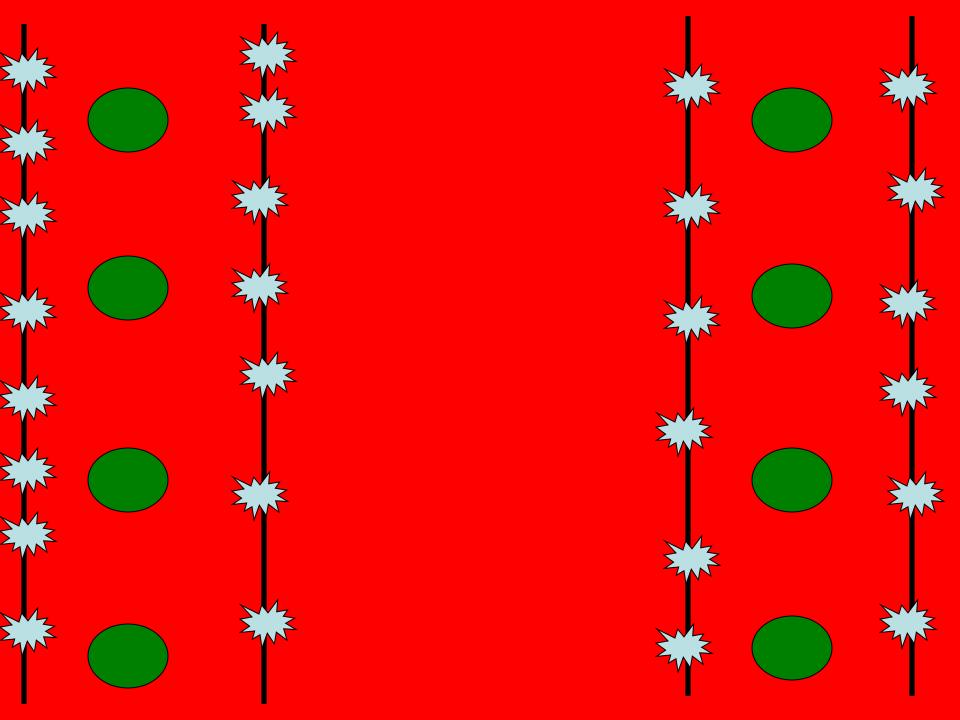
- Sample trees between July 7th and August 7th.
- Use terminal shoots exposed to the sun.
- Collect leaflets from all sides of the tree.
- Avoid leaflets damaged by insects and diseases.

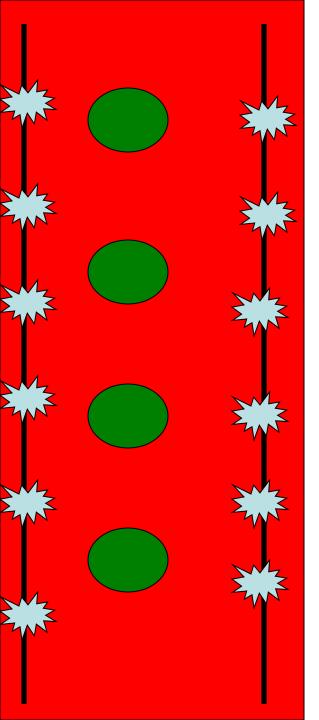
Soil Sampling

- Useful for pH and toxicities
- Late Fall/Winter
- Sample uniform area
- 1 pint/sample (15-20 cores) over large area
- Sample to 8" depth

Nitrogen

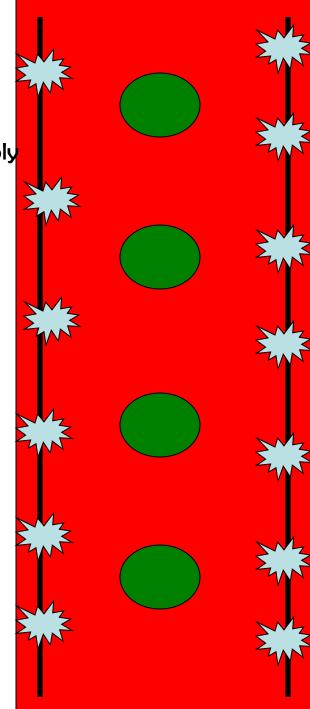
- General Recommendation: 10 lbs N/100 lbs expected crop
 - Split April/June/August
- Most of the N taken up during the kernel-fill stage will supply the N storage pool needed for early spring growth.
- Dry-Land /Neglected Orchards Split March/May




Nitrogen

Young trees

- Year 1: 1 lb 10-10-10in June if growth is good (2-4' terminal growth)
- Year 2: 1 lb in April and 1 in June
- Year 3-4: 2 lbs in April and June
- Year 5-7: 4 lbs in April and June



40 X 40
12 foot wide herbicide strip:
12/40 = 30%
Can reduce area that you apply fertilizer to by 70% with band application

At a rate of 75 lbs per acre: 100 acres X 75 = 7500 lbs N 7500 X 30% = 2250 lbs N

At \$1/lb = a savings of
\$52.50 per acre with band application

Broadcast Band Application 24% of orchard floor

Liquid 28-0-0-5 applied over herbicide strip 30% of orchard floor

Injection Through Drip System

Broadcast Application 100% of orchard floor

Fertilizer Application Method Effect on Leaf N

Treatment	Leaf N 2008	Leaf N 2009	Leaf N 2010 (Ibs/tree)	Leaf N Average
Simulated Injection 28-0-0-5	2.98a	2.94a	2.73a	2.88
Broadcast Band Ammon. Nitrate	2.89ab	2.80a	2.52b	2.74
Broadcast Ammon. Nitrate	2.85b	2.89a	2.60b	2.78
Liquid N Herbicide Sprayer 28-0-0-5	2.80b	2.96a	2.42c	2.73

N rate for all treatments = 70 lbs/treated acre Funded by GACCP

Fertilizer Application Method Effect on Yield

Treatment	Yield 2008 (lbs/tree)	Yield 2009 (lbs/tree)	Yield 2010 (lbs/tree)	Yield Average (lbs/tree)
Simulated Injection 28-0-0-5	129.6a	128a	134a	130.5
Broadcast Band Ammon. Nitrate	107.8a	144a	98b	116.6
Broadcast Ammon. Nitrate	107.5a	176a	105ab	129.5
Liquid N Herbicide Sprayer 28-0-0-5	152.9a	115a	124ab	130.6

N rate for all treatments = 70 lbs/treated acre Funded by GACCP

Summary

- Applying N to smaller percentage of the orchard floor reduces cost with no effect on production or leaf N through the 3rd year as compared to broadcast application of ammonium nitrate over 100% of the orchard floor
- Liquid 28-0-0-5 applied via drip may be the most efficient means of N fertilization

Potassium (K)

- K is transported to nuts at leaf's expense
- 50-100 lbs K applied in February/March
- During "on" year apply additional 30 lbs K in mid August
- 1.25-2.5 ppm in leaf analysis
- Manage N/K ratio to 2:1
- Manage Mg---(No Dolomitic lime above .45% Mg)
- Deficiency most common on Desirable and Schley

Zinc

45. Interveinal chlorosis and undulating margins of pecan leaflets with mild zinc deficiency. (Courtesy R. D. O'Barr)

Necessary for shoot elongation, leaf expansion, and yield

- Apply when Zn in leaf is below 50 ppm
- 2 lbs Zinc sulphate + 3 lbs Potassium Nitrate/100 gallons
- Begin 2 wks after budbreak until shoot elongation complete

Mouse Ear

- Nickel Deficiency
- Zinc Management
- Nickel lignosulfonate

- Apply 1 pt/A in spring (April) while canopy is developing (parachute stage);
- 2nd application: 1 pt/A 30-60 days after 1st appl.
- Third application of 1.5-2 pts/A in late Sept.early October before leaf fall to prevent mouse ear in the spring flush.

Effect of Poultry Litter and Clover on 'Desirable' Pecan

Treatment	Leaf N (2008)	Leaf N (2009)	Leaf N (2010)	Leaf N (2011)	Leaf N (4 yr avg)
Poultry Litter	2.52a	2.63a	2.48a	2.67a	2.58
Crimson Clover	2.41a	2.67a	2.44a	2.54a	2.51
Litter + Clover	2.44a	2.96a	2.43a	2.59a	2.60
Ammonium Nitrate (75 lbs N/acre)	2.57a	2.66a	2.46a	2.67a	2.59
Untreated		2.67a	2.44a	2.47a	2.52

Effect of Poultry Litter and Clover on 'Desirable' Pecan

Treatment	Yield/tree (2008)	Yield/ tree (2009)	Yield/tree (2010)	Yield/tree (2011)	Yield/tree (4 yr avg)
Poultry Litter	92.7a	122ab	42 a	85ab	85.4
Crimson Clover	94.7a	86ab	36a	57.5b	68.6
Litter + Clover	87a	84b	4 3a	105a	79.8
Ammonium Nitrate (75 lbs N/acre)	62a	129a	32a	92.6ab	78.9
Untreated		130a	17b	51.8b	66.2

Yr	Treatment	N (%)	SOM (%)	P (kg·ha ⁻¹)
2008	Clover	0.10 a ^z	2.65 a	63 c
	Litter	0.10 a	2.75 a	249 a
	Clover + litter	0.10 a	2.70 a	152 b
	Ammonium nitrate	0.10 a	2.25 b	78 c
2009	Clover	0.12 a	2.44 a	49 b
	Litter	0.14 a	2.44 a	116 a
	Clover + litter	0.14 a	2.15 ab	132 a
	Ammonium nitrate	0.13 a	2.28 a	69 b
	Control	0.13 a	2.01 b	74 b
2010	Clover	0.14 a	1.93 a	63 b
	Litter	0.11 ab	1.78 ab	242 a
	Clover + litter	0.11 ab	2.10 a	202 a
	Ammonium nitrate	0.10 ab	1.74 ab	92 b
	Control	0.09 b	1.44 b	99 b

Table 2. Total soil nitrogen (N), soil organic matter (SOM), and soil phosphorus (P) for clover, pou	iltry
litter, clover + poultry litter, ammonium nitrate, and control treatments from 2008-2010.	-

*Means followed by the same letter are not different at $P \leq 0.05$ by Duncan's multiple range test.

HORTSCIENCE VOL. 46(2) FEBRUARY 2011

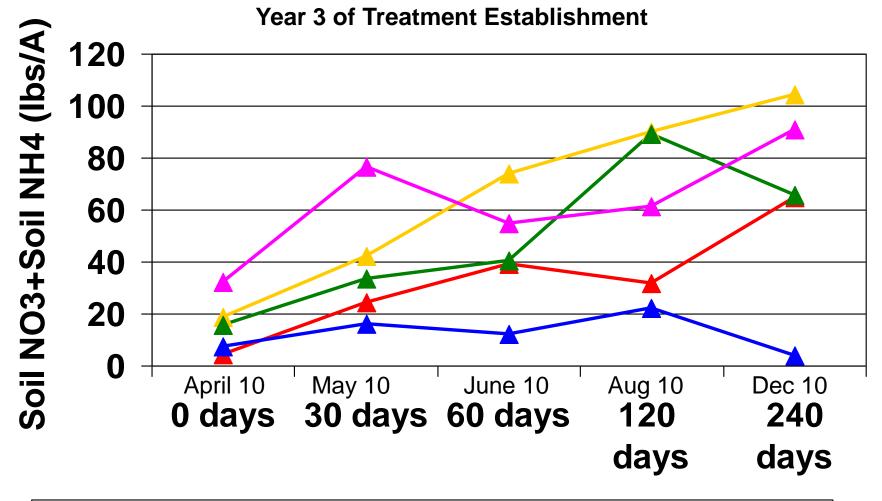

Yr	Treatment	MIP (percent AM root colonization)	Microbial biomass carbon (Mg C/kg soil)	Phosphatase (mMol·g ⁻² , h ⁻¹)
			(Mg C/kg soli)	
2008	Clover	46.7 a ^z		10.6 a
	Clover/litter	22.0 b		9.8 ab
	Litter	26.5 ab		7.5 Ь
	Ammonium nitrate	25.9 ab	_	7.4 b
2009	Clover	13.3 a	250 a	3.5 a
	Clover/litter	6.7 ab	220 a	3.2 ab
	Litter	3.0 b	240 a	2.8 bc
	Ammonium nitrate	4.3 b	180 b	2.9 abc
	Control	4.4 b	170 b	2.3 c
2010	Clover	4.0 a	140 a	9.6 a
	Clover/litter	0.0 b	120 b	8.6 a
	Litter	0.0 b	100 b	10.4 a
	Ammonium nitrate	0.0 b	120 b	10.5 a
	Control	0.0 b	120 b	13.3 a

Table 3. Mycorrhizal inoculum potential (MIP), microbial biomass carbon (MBC), and phosphatase activity for clover, poultry litter, clover + poultry litter, ammonium nitrate, and control treatments.

*Means followed by the same letter are not different at $P \le 0.05$ by Duncan's multiple range test. AM = arbuscular mycorrhizal.

HORTSCIENCE VOL. 46(2) FEBRUARY 2011

2010 Nitrogen Availability

Clover
 Litter/Clover
 Litter

Summary

- Poultry Litter should be applied in <u>March</u>
- <u>On very sandy soil</u>, crimson clover contributes about 30 lbs additional N per acre early in the establishment phase
- Clover also enhances organic matter and biological activity of soil*
- Clover can provide adequate late season N, but fertilizer application is necessary in spring where clover is used
- Particularly <u>in a wet year</u>, additional late season fertilizer application may be necessary

Why is my leaf S always deficient?

- In the 2008 orchard survey, soil S of Georgia pecan orchards averaged 26.6 lb/a, which is within the desired range of 10-50 lbs/acre.
- C:S ratio
- Sulfur is generally immobilized in soils with a C:S ratio greater than 400:1, even when soil tests indicate an adequate S level.

	C:S ratio (1-6" depth)
Mean	504:1
Sample Range	95:1-1600:1

Sulfur and Nitrogen

- Uptake and assimilation of N and S by plants are strongly interrelated and dependent upon one another
- At high N levels, S deficiency symptoms become more pronounced
- Sulfur deficiency impairs nitrogen use efficiency
- Greenhouse studies have shown S deficiency symptoms occurred when pecan leaf S was less than 0.16% (Hu et al. 1991). This study also showed that the leaf N:S ratio was a reliable indicator of tree S status.
- A N:S ratio of 9:1 has been shown to be optimum for maximum growth of pecan (Hu and Sparks, 1992).

Foliar Sulfur Trial

	Leaf Nitrogen	Leaf Sulfur	Chlorophyll Index 7-11-11	N:S Ratio
Sulfur 1 qt/100 g	2.72a	0.20a	43.6a	13.6a
Urea 4 Ibs/100g	2.58b	0.18b	42.0b	14.1a
Sulfur+Urea	2.70ab	0.19ab	42.3ab	14.0a
Untreated	2.73a	0.20a	41.4b	13.7a

Foliar Sulfur Trial

	Percent Kernel	Nut Weight	Count	N:S Ratio
Sulfur 1 qt/100 g	50.7a	9.7a	47.0b	13.6a
Urea 4 Ibs/100g	50.2a	9.2b	49.2a	14.1a
Sulfur+Urea	50.2a	9.5ab	47.6b	14.0a
Untreated	50.6a	9.2b	49.2a	13.7a

Potential Added Value of Sulfur

- Sulfur has some level of disease suppression on many fungal plant pathogens
- SIR-Sulfur fertilization increased resistance against various fungal pathogens in many crops
- Sulfur effectively suppresses mite populations

Summary

- While foliar S did not increase leaf S or leaf N, foliar Urea sprays alone did reduce leaf S and leaf N
- Indicates that foliar S should probably be used where foliar Urea is used and/or where leaf N is maintained at a high level (>2.8%)
- Foliar S increased leaf chlorophyll index
- Foliar S increased nut weight and size