Selfish genes: a green beard in the red fire ant

Laurent Keller* & Kenneth G. Ross†

* Institute of Zoology and Animal Ecology, University of Lausanne, Bâtiment de Biologie, 1015 Lausanne, Switzerland
† Department of Entomology, University of Georgia, Athens, Georgia 30602-2603, USA

A 'green-beard' gene is defined as a gene that causes a phenotypic effect (such as the presence of a green beard or any other conspicuous feature), allows the bearer of this feature to recognize it in other individuals, and causes the bearer to behave differently towards other individuals depending on whether or not they possess the feature1-4. Such genes have been proposed on theoretical grounds to be agents mediating both altruism and intragenomic conflicts5,6, but until now few, if any, of these genes have been identified5,6. Here we provide evidence of a green-beard gene in the red imported fire ant, Solenopsis invicta. In polygyny (multiple-queen) colonies, all egg-laying queens are Bb heterozygotes at the locus Gp-9 (ref. 6). Previous studies suggested that Bb females die prematurely from intrinsic causes7; we now show that BB queens initiating reproduction are killed by workers, and that it is primarily Bb rather than BB workers that are responsible for these executions. This implies that allele Gp-9 is linked to a green-beard allele that preferentially induces workers bearing the allele to kill all queens that do not bear it. Workers appear to distinguish BB from Bb queens on the basis of a transferable odor cue.

We mimicked the natural recruitment of new reproductive queens into polygynous nests by reintroducing young queens into their parental colonies after they had been kept in small colony fragments with workers but not other queens for three days. (The absence of mature reproductive queens induces reproductive development of young queens.) There was a strong association between Queen genotype at Gp-9 and the probability of being attacked: all attacked queens were homozygous for the B allele, whereas none of the queens with a copy of allele B face significant worker aggression (Table 1). A separate experiment in which worker attacks were not interrupted showed that such attacks invariably led to the death of a queen within 15 minutes (n = 50).

We next compared the genotypes of workers attacking Bb queens with those of workers sampled randomly from the same population and discovered that attackers were much more likely to carry the B allele (82.5 versus 59.3% of genotypes; P < 0.01). To confirm this, we did a second experiment in which we compared the genotypes of workers attacking Bb queens with those of workers in the vicinity of non-attacked (Bb) queens in the same colonies. The proportion of Bb and bb workers surrounding attacked (Bb) queens was significantly higher than the proportion surrounding non-attacked (Bb) queeens (Table 2). Our assay may considerably underestimate the true extent of genotypic bias among workers attacking BB queens because these attacks elicited the formation of compact worker groups around the queens, making it impossible to collect only attacking workers. Thus, although our experiments demonstrate that such attacks are undertaken primarily by workers with at least one copy of allele Gp-9, they do not allow us to determine whether the attacks are carried out only by these workers. The possibility that these results are due to workers with the B allele generally having a lower threshold for aggression can be excluded, because such individuals were not overrepresented among the workers attacking foreign heterospecific ant workers (Aphaenogaster sp.) introduced into nests (n = 788; G = 2.42; d.f. = 1; P = 0.12; workers with the B allele actually were underrepresented among these attackers).

Some of the workers involved in attacks on BB queens subsequently were attacked by nestmates, suggesting that they might have acquired a distinctive odor from the attacked queens. To test this hypothesis, we rubbed randomly chosen workers against the cuticle of BB or Bb queens and then placed them in groups of nestmate

Table 1 Proportion of young queens of each Gp-9 genotype attacked by workers

<table>
<thead>
<tr>
<th>Age</th>
<th>Proportion of queens attacked</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-10 days</td>
<td>BB: 0.61, 0.01, 0.00; Bb: 0.25</td>
</tr>
<tr>
<td>(n = 19 colonies)</td>
<td>(n = 267)</td>
</tr>
<tr>
<td>11-14 days</td>
<td>BB: 0.91, 0.00, 0.00; Bb: 0.00</td>
</tr>
<tr>
<td>(n = 18 colonies)</td>
<td>(n = 327)</td>
</tr>
</tbody>
</table>

The frequencies of attacks on 7-10-day-old queens varied significantly according to genotype (G = 190.78; d.f. = 2; P < 0.0001). The proportion of BB queens attacked was significantly greater than the proportion of either Bb queens (G = 189.56; d.f. = 1; P < 0.0001) or bb queens (G = 50.94; d.f. = 1; P = 0.003) attacked (the few bb queens found presumably had not yet succumbed to the age-dependent lethal effects of the genotype). The same pattern was revealed in within-individual colonies: in each of the 10 colonies in which Bb queens were present, the proportion of such queens attacked was significantly greater than the proportion of attacked queens with the other two genotypes (binomial probability, P < 0.001). A similar association between queen genotype and aggression occurred for 11-14-day-old queens (G = 48.00; d.f. = 2; P = 0.0001), with the proportion of BB queens attacked again being significantly greater than the proportion of either Bb queens (G = 43.41; d.f. = 1; P < 0.0001) or bb queens (G = 22.61; d.f. = 1; P < 0.001) attacked. At the colony level, the proportion of attacked Bb queens of this older class again was greater than the proportion of attacked queens with the other two genotypes in each of the three colonies in which Bb queens were present. Two lines of evidence suggest that BB queens are killed as they approach sexual maturity and become potential egg layers (about 10 days after adult emergence8). First, the proportion of attacked Bb queens was higher for 11-14-day-old queens than for 7-10-day-old queens (G = 4.58; d.f. = 1; P = 0.03). Second, among queens in the younger age class, the non-attacked queens with genotype BB were significantly lighter (12.8 ± 1.3 g; n = 36) than the attacked queens with this genotype (14.1 ± 1.1 g; n = 56; two-way ANOVA, weight difference: F = 23.59; P < 0.0001; colony effect: F = 1.95; P = 0.05; interaction: F = 0.83); NSC (basic weight) is a good indicator of the age of unmated queens9,10, these data suggest that young and lighter Bb queens were attacked relatively less frequently. Such age-associated attacks on young workers may explain the decrease in the proportion of BB genotype among queens as they age: this proportion was 0.24 in the 7-10-day-old queens, and 0.03 in the 11-14-day-old queens (G = 77.68; d.f. = 1; P < 0.001).

Table 2 Number of workers of each Gp-9 genotype surrounding attacked, Gp-9* queens and non-attacked, Gp-9* queens

<table>
<thead>
<tr>
<th>Worker</th>
<th>Gp-9 genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>(attacked)</td>
</tr>
<tr>
<td>Bb</td>
<td>(non-attacked)</td>
</tr>
<tr>
<td>BB</td>
<td>(attacked)</td>
</tr>
<tr>
<td>Bb</td>
<td>(non-attacked)</td>
</tr>
<tr>
<td>Total</td>
<td>23 (Bb)</td>
</tr>
</tbody>
</table>

Proportions of attacking and non-attacking workers with each genotype are shown in parentheses. There was a significant association between queen genotype and worker genotype (G = 173.64; d.f. = 2; P = 0.0003). With attacks on Bb queens being made preferentially by workers having the B allele. The difference remains highly significant, both when BB workers are eliminated from the analysis (G = 11.47; d.f. = 1; P = 0.001) and when they are pooled with Bb workers (G = 10.24; d.f. = 1; P = 0.001). The same pattern was found within individual colonies. Of the nine colonies that contained three or more queens of each genotype, eight had a relative overrepresentation of workers attacking Bb queens, an outcome that departs significantly from the null expectation that 50% of nests should have such overrepresentations (binomial test, n = 8; P = 0.01). Furthermore, the overrepresentation of allele B in attacking workers was significant in two of these colonies (G = 6.89; d.f. = 1; P < 0.01 and G = 5.07; d.f. = 1; P = 0.02). The few Bb workers found presumably were very young workers that had not yet succumbed to the age-dependent lethal effects of this genotype.

NATURE | VOL. 346 | AUGUST 1998 | 573
workers. Those rubbed against BB queens elicited significantly higher levels of aggression (aggression level was 2.5 ± 0.7 $(n = 10)$; Mann–Whitney U test, $Z = 3.71$, $P = 0.0002$) and were killed significantly more often (40% $(n = 10)$; $G = 6.56$, d.f. = 1, $P = 0.01$) than those rubbed against BB queens (aggression level, 0.8 ± 0.4 $(n = 10)$, 0% killed $(n = 10)$). These data, together with the finding that BB queens are attacked when they attain sexual maturity (Table 1), suggest that recognition and selective elimination of BB queens may be triggered by two chemical cues, one signalling a queen's sexual maturity and the other her Gp-9-linked genotype. The tight coupling between a queen's reproductive state and pheromone production has been demonstrated in S. invicta, as has the ability of workers to assess the level of pheromone production by individual queens. Thus, the green-beard allele linked to Gp-9 may induce workers bearing to kill all sexually mature queens except those possessing a specific chemical signature encoded by this allele. The green-beard gene responsible for differences in queen odorants and in the aggressive behaviour of workers with different Gp-9 genotypes may be Gp-9 itself, or one or more genes in very strong gametic disequilibrium with Gp-9. The enzyme-encoding locus Pgm-3 (ref. 6) is tightly linked to and in strong disequilibrium with Gp-9. All maleos of genotype Pgm-3M have also genotype Gp-9M (ref. 6), accounting for the strong worker discrimination against Pgm-3mA queens reported previously for polygynous fire ants. Analyses considering both genes simultaneously show that all described phenotypic and behavioural variation among queens and workers can be accounted for by Gp-9 genotype alone in the Georgia population under study (our unpublished results). Moreover, although workers eliminated all 33 Pgm-3M queens in the re-introduction experiments (Table 1), they also eliminated 26 Pgm-3M and five Pgm-3m queens, indicating that Pgm-3M is not in complete disequilibrium with the green-beard allele. In contrast, workers eliminated no queens with allele Gp-9m in these same experiments. Finally, separate experiments show that workers destroy 100% of introduced Gp-9m queens when these are fully sexually mature (our unpublished results), which explains the complete absence of egg-laying queens with this genotype in polygynous colonies in Georgia. These data indicate that either Gp-9 is directly responsible for the effects reported, or that the actual gene(s) involved is in complete disequilibrium with Gp-9 but not Pgm-3.

The mechanism of selection against Gp-9m queens is similar to the process of meiotic drive. Driving elements invade a population by distorting the outcomes of meiosis, such that these elements are carried by more than 50% of viable gametes produced by heterozygotes. Allele Gp-9M causes workers to destroy queens without the allele, and high frequencies in queens produced by the colony. Fire-ant colony productivity is limited mostly by worker number rather than queen number2, so selective elimination of BB queens results in an overall increase in the reproductive success of Bb queens and thus in the number of copies of the b allele transmitted to subsequent generations. Models show that, all else being equal, an outlaw gene3, such as Gp-9M, that causes the destruction of individuals not bearing it in favour of those that do, should spread rapidly and become fixed in a population34,40, yet Gp-9 is polymorphic in all polygynous S. invicta populations studied in South America and the USA (ref. 6, and C. J. DeHeer, D. D. Shoemaker and K.G.R., unpublished results). Fixation of Gp-9M apparently is prevented primarily because queens (as well as workers) homozygous for this allele die prematurely (that is, the allele behaves as a recessive lethal), although gene flow from a different social form fixed for the alternative allele probably also plays a role6.

Our results show that all components of the green-beard effect—a detectable phenotypic feature, the ability to recognize the feature, and different responses towards individuals possessing or not possessing the feature—are present in polygynous S. invicta and are mediated by a gene or group of genes closely linked to Gp-9. The analogy between the green-beard effect reported here and meiotic drive lies not only in the manner in which one allele biases its transmission, but also in the mechanism preventing its fixation. In both cases, the advantage of increased transmission is counteracted by negative viability and/or fertility effects of the allele when in the homozygous condition44,47. This trade-off may explain why green-beard genes have seldom been reported. In the absence of counter-vailing evolutionary pressures, polymorphisms at green-beard loci are expected to be present only as transient phases in the history of a population and thus will usually go undetected.

Methods

Worker aggression towards queens. The queens originated from 37 polygynous colonies collected in northern Georgia, USA. Entire colonies were transferred into laboratory rearing units using standard procedures, and the number of reproductive queens in each colony was reduced to four. All sexuals were removed from these colonies except for 40 adult winged queens with unscerotized cuticles (0–3 days old). All winged queens in 19 of the colonies were removed four days later, and 18–20 of these queens from each colony were placed individually in small fragments of the source colony containing ~300 worker brood and adults but no other queens. After three days of separation, the queens (then 7–10 days old) were returned individually to their parent colony (each containing at least 5,000 workers) and the level of aggression directed towards them was recorded during the 5 min immediately following introduction. An identical procedure was followed with the remaining 18 colonies, except that queens were removed from their parent colony after 8 days (thus they were 11–14 days old when returned). Assessment of the level of aggression was done without knowledge of Gp-9 genotypes, which were determined later by means of starch-gel electrophoresis. Association between genotype and aggression was determined using G-tests39. Other experiments (ref. 7, and our unpublished results) showed that worker responses to queens of alternative genotypes are independent of whether queens are introduced sequentially (as in this experiment) or in larger groups.

Genotypes of workers attacking Gp-9m queens and Aphaenogaster workers. The preliminary experiment in which genotype frequencies of attacking workers were compared to population frequencies was done using 10 polygynous colonies collected in northern Georgia. Twenty 10–13-day-old queens from each of these colonies were reintroduced into their parent colonies after having been separated for three days (see above). Attacked queens and the clusters of workers surrounding them were collected with forceps. All 22 queens attacked were found to be Gp-9m homozygotes. We determined the Gp-9 genotype of 5–11 (average, 8.9) workers surrounding each of these queens, and the average frequencies were estimated using a resampling procedure in which a single worker genotype per colony was drawn at random (with replacement) 1,000 times. These frequencies were compared to genotype frequencies estimated in the source population in the same year (based on 406 workers sampled randomly from 181 colonies; the frequencies and their 95% confidence intervals were obtained using the resampling procedure). The follow-up experiment was conducted with another 19 colonies, the same as used to determine the level of aggression of workers against 7–10-day-old queens (see above). All 55 queens attacked were found to be BB homozygotes (Table 1). We determined the Gp-9 genotype of five workers surrounding each of 47 of these queens. As a control, we collected and genotyped five workers in the vicinity of each of 47 Bb (non-attacked) queens. The same numbers of BB and Bb queens were used from each colony (maximum four per colony) to control for possible differences in genotype frequencies among colonies. To rule out the possibility that behavioural differences among workers with different Gp-9 genotypes stem simply from intrinsic differences in their aggressiveness, we sequentially introduced four workers of another ant species (Aphaenogaster sp.) into each of 20 colonies and collected five fire ant workers attacking each alien ant. The genotype frequencies of the attacking fire ants were compared to those of 400 randomly sampled workers (20 workers from each of the 20 colonies). This procedure again controlled for possible differences in genotype frequencies among colonies. Associations between genotype frequencies were determined using G-tests. Queen-odour transfer. Ten of the 11–14-day-old queens attacked by workers were kept individually for at least 10 min in a small isolation unit before a randomly selected live worker from the same parent colony was rubbed against the queen's thorax and abdomen. The worker was reintroduced into the parent...
colony 2 min later and aggression was recorded during the 5 min immediately after introduction. The same procedure was followed for workers that were rubbed against non-attacked queens, with a single such queen being chosen randomly to match by colony each attacked queen. This procedure controlled for possible differences in worker behaviour among colonies. Subsequent genetic analysis revealed that all attacked queens were Gp-9th homozygotes, whereas all non-attacked queens were Gp-9th heterozygotes. Levels of aggression were defined as: 0, no aggression; 1, infrequent biting; 2, frequent biting but attacked workers not immobilised; and 3, frequent biting with attacked workers immobilised. Scoring was done without knowledge of whether test workers had been rubbed against attacked (Bb) or non-attacked (Bb) queens. In half of the replicates, we first introduced the worker rubbed against a Gp-9th queen and in the other half the worker rubbed against a Gp-9th queen. This procedure controlled for possible changes in workers’ behaviour in recipient colonies through time.

Received 7 November 1997; accepted 29 May 1998.

Acknowledgements. We thank A. Boutilier, C. DeHeer, J. Evans, M. Goodisman, D. Haig, L. Hunt and M. Queller for comments on the manuscript. This work was funded by grants from the Swen and US National Science Foundation and the National Geographic Society.

Correspondence and requests for materials should be addressed to L.K. (e-mail: laurent.Keller@unil.ch).