Since homeowners are unable to irrigate across most of the state, disease pressure remains low. Plant problems seen in the diagnostic clinic and throughout the state are related to the stressful, persistent drought conditions. For instance, we are seeing an extensive amount of dieback in our ‘favorite’ evergreens, Leyland cypress. Most of the damage is likely *Seiridium* canker caused by the fungal pathogen *Seiridium unicorne*. This pathogen becomes an issue during extremely dry weather, causing cankers on scattered limbs throughout the tree. Management recommendations for this plant problem include removal of the dead/dying limbs by pruning and one inch of irrigation per week, the latter of which we are unable to do in most areas of the state.

Another issue I have received several calls about is dieback and death of large, older trees (mainly oaks and poplars). The direct cause of death for most of these trees is attributed to several factors. These trees usually have quite a few problems that are often unnoticed or masked. Many of them may have heart rots, insect damage, or other fungal problems, such as cankers, which they can usually live with, but without the needed water they simply cannot survive.

The monthly table of plant samples submitted to the Homeowner diagnostic clinic is shown below. There will be no ‘Disease of the Month’ for October. Instead, Mrs. Jan Fowler and I have prepared a 2006 Annual Plant Disease Clinic report, which includes all physical samples (both homeowner and commercial) diagnosed in both plant disease clinics (Athens and Tifton). It is available on our clinic webpage (http://plantpath.caes.uga.edu/extension/clinic.html) under Annual Reports.

OCTOBER 2007 Homeowner Samples

<table>
<thead>
<tr>
<th>County</th>
<th>Plant</th>
<th>Common Name of Disease (Pathogen)</th>
<th>Type of Sample – DDDI or Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>Gardenia</td>
<td>No disease on foliage</td>
<td>Physical</td>
</tr>
<tr>
<td>Bartow</td>
<td>Leyland cypress</td>
<td>Possible Seiridium canker</td>
<td>DDDI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Seiridium unicorne)</td>
<td></td>
</tr>
<tr>
<td>Bartow</td>
<td>Rhododendron</td>
<td>Possible root rot</td>
<td>DDDI</td>
</tr>
<tr>
<td>Berrien</td>
<td>St. Augustine</td>
<td>Take all root rot</td>
<td>Physical</td>
</tr>
<tr>
<td>County</td>
<td>Plant</td>
<td>Common Name of Disease (Pathogen)</td>
<td>Type of Sample – DDDI or Physical</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Coweta</td>
<td>Centipede</td>
<td>(Gaemannomyces graminis) and possible Fairy Ring</td>
<td>Physical</td>
</tr>
<tr>
<td>Dougherty</td>
<td>Confederate</td>
<td>Root rot (Rhizoctonia solani)</td>
<td>Physical</td>
</tr>
<tr>
<td>Henry</td>
<td>Jasmine</td>
<td>No disease – Cultural/environmental stress</td>
<td>Both</td>
</tr>
<tr>
<td>Houston</td>
<td>St. Augustine</td>
<td>Take all root rot (G. graminis)</td>
<td>DDDI</td>
</tr>
<tr>
<td>Jeff Davis</td>
<td>Pomegranate</td>
<td>No disease – Environmental stress</td>
<td>Physical</td>
</tr>
<tr>
<td>Lincoln</td>
<td>St. Augustine</td>
<td>Take all root rot (G. graminis)</td>
<td>Physical</td>
</tr>
<tr>
<td>Lumpkin</td>
<td>Oak</td>
<td>Possible Bacterial Wetwood</td>
<td>DDDI</td>
</tr>
<tr>
<td>Monroe</td>
<td>Centipede</td>
<td>Take all root rot (G. graminis) and Large patch (Rhizoctonia solani)</td>
<td>Both</td>
</tr>
<tr>
<td>Monroe</td>
<td>Crucifer vegetables</td>
<td>Unable to determine</td>
<td>DDDI</td>
</tr>
<tr>
<td>Monroe</td>
<td>Tulip tree</td>
<td>Unable to determine – possible drought stress</td>
<td>DDDI</td>
</tr>
<tr>
<td>Newton</td>
<td>Rose</td>
<td>No disease – possible transplant shock</td>
<td>DDDI</td>
</tr>
<tr>
<td>Pierce</td>
<td>St. Augustine</td>
<td>Take all root rot (G. graminis) and Anthracnose (Colletotrichum sp.)</td>
<td>Physical</td>
</tr>
<tr>
<td>Richmond</td>
<td>St. Augustine</td>
<td>Take all root rot (G. graminis)</td>
<td>Physical</td>
</tr>
<tr>
<td>Twiggs</td>
<td>Holly</td>
<td>Possible Cylindrocladium leaf spot (Cylindrocladium sp.)</td>
<td>DDDI</td>
</tr>
<tr>
<td>Ware</td>
<td>Centipede</td>
<td>Take all root rot (G. graminis)</td>
<td>Physical</td>
</tr>
<tr>
<td>Ware</td>
<td>Bahiagrass</td>
<td>Fusarium head blight (Fusarium sp.) and Anthracnose (Colletotrichum sp.)</td>
<td>Physical</td>
</tr>
</tbody>
</table>

Total Samples (late-September to late-October) = 20